русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Методы построения функций принадлежности нечетких множеств


Дата добавления: 2013-12-24; просмотров: 1925; Нарушение авторских прав


Примеры нечетких множеств

Основные характеристики нечетких множеств

Пусть M = [0,1] и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M

  • Величина mA(x) называется высотою нечеткого множества A. Нечеткое множество A является нормальным, если его высота равняется 1, то есть верхняя граница ее функции принадлежности равняется 1 ( mA(x)=1). При mA(x)<1 нечеткое множество называется субнормальным.
  • Нечеткое множество является пустым, если "xОE m A(x)=0. Непустое субнормальное множество можно нормализировать по формуле mA(x) :=
  • Нечеткое множество является унимодальным, если mA(x)=1 лишь для одного x из E.
  • Носителем нечеткого множества A является обычное подмножество со свойствомmA(x)>0, то есть носитель A = {x/mA(x)>0} " xОE.
  • Элементы xОE, для которых mA(x)=0,5 называются точками перехода множества A.

4. Пусть E = {Запорожец, Жигули, Мерседес,....} - множество марок автомобилей, а E' = [0,µ] - универсальное множество "стоимость", тогда на E' мы можем определить нечеткие множества типа: "для небогатых ", "для среднего класса", "престижные", с функциями принадлежности типа:

Имея эти функции и зная цены автомобилей из E в данный момент времени, определим на E' нечеткие множества с этими же названиями.

Так, например, нечеткое множество "для небогатых", заданное на универсальном множестве E = {Запорожец, Жигули, Мерседес,....} выглядит таким образом:

Аналогично можно определить нечеткое множество "скоростные", "средние", "тихоходные" и т.д.

В приведенных выше примерах использованы прямые методы, когда эксперт или просто задает для любого xОE значение mA(x), или определяет функцию принадлежности. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, час, расстояние, давление, температура и т.д., то есть когда выделяются полярные значения.



Во многих задачах при характеристике объекта можно выделить набор признаков и для любого из них определить полярные значения, отвечающие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лица можно выделить следующие пункты:

   
x1 высота лба низкий широкий
x2 профиль носа курносый горбатый
x3 длина носа короткий длинный
x4 разрез глаз узкий широкий
x5 цвет глаз светлый темный
x6 форма подбородка острый квадратный
x7 толщина губ тонкие толстые
x8 цвет лица темный светлый
x9 овал лица овальное квадратное

Для конкретного лица А эксперт, исходя из приведенной шкалы, задает mA(x)О [0,1], формируя векторную функцию принадлежности { mA(x1), mA(x2),... mA(x9)}.

Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств для определения нечеткого множества. Как правило, это методы попарных сравнений. Если бы значение функций принадлежности были известны, например, mA(xi) = wi, i=1,2,...,n, тогда попарные сравнения можно представить матрицей отношений A = {aij}, где aij=wi/wj (операция деления).



<== предыдущая лекция | следующая лекция ==>
Нечеткие множества | Нечеткая и лингвистическая переменные


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.465 сек.