Проблема простейшего представления функций в заданном базисе связана с изучением свойств функций этого базиса. В настоящее время существенные результаты получены для базиса, состоящего из отрицания, конъюнкции и дизъюнкции. Именно этот базис и будет рассматриваться в дальнейшем.
Любая функция алгебры логики может быть записана в виде СДНФ. То, что запись в СДНФ часто является неэкономной, видно из примера.
Если к исходной ДНФ применять лишь операции склеивания и поглощения, то наступит момент, когда эти преобразования окажутся уже невозможными. В этом случае получим тупиковую ДНФ (ТДНФ). Среди множества ТДНФ содержится и МДНФ. Получая всевозможные тупиковые ДНФ и сравнивая их по числу букв, можно найти все минимальные формы для данной функции. Величина необходимого перебора определяется числом элементов класса тупиковых ДНФ для функции алгебры логики, зависящей от n аргументов, и может быть очень большой.