Примеры: Oracle, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР.
Встраиваемые
Встраиваемая СУБД — СУБД, которая может поставляться как составная часть некоторого программного продукта, не требуя процедуры самостоятельной установки. Встраиваемая СУБД предназначена для локального хранения данных своего приложения и не рассчитана на коллективное использование в сети. Физически встраиваемая СУБД чаще всего реализована в виде подключаемой библиотеки. Доступ к данным со стороны приложения может происходить через SQL либо через специальные программные интерфейсы.
Примеры: OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Microsoft SQL Server Compact, ЛИНТЕР.
Когаловский М.Р. Энциклопедия технологий баз данных. — М.: Финансы и статистика, 2002. — 800 с. — ISBN 5-279-02276-4
Кузнецов С. Д. Основы баз данных. — 2-е изд. — М.: Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2007. — 484 с. — ISBN 978-5-94774-736-2
ГОСТ Р ИСО МЭК ТО 10032-2007: Эталонная модель управления данными (идентичен ISO/IEC TR 10032:2003 Information technology — Reference model of data management)
Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. — 8-е изд. — М.: Вильямс, 2005. — 1328 с. — ISBN 5-8459-0788-8 (рус.) 0-321-19784-4 (англ.)
Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и практика = Database Systems: A Practical Approach to Design, Implementation, and Management. — 3-е изд. — М.: Вильямс, 2003. — 1436 с. — ISBN 0-201-70857-4
Гарсиа-Молина Г., Ульман Дж., Уидом Дж. Системы баз данных. Полный курс = Database Systems: The Complete Book. — Вильямс, 2003. — 1088 с. — ISBN 5-8459-0384-X
C. J. Date Date on Database: Writings 2000–2006. — Apress, 2006. — 566 с. — ISBN 978-1-59059-746-0, 1-59059-746-X
Булевой (логической) переменной называют переменную, принимающую значение из множества {0,1}. Название «логическая» следует из того, что её значения трактуются чаще всего как «истина» (для 1) и «ложь» (для 0).
Функцией алгебры логики (переключательной или булевой функцией) от n переменных называют однозначное отображение множества всевозможных наборов значений n булевых переменных в множество {0,1}.
Такую функцию можно представить в виде таблицы из n+1столбцов и 2n строк. Эта таблица называется таблицей истинности.
Наборы значений переменных располагают в лексикографическом порядке (в порядке возрастания),как в примере в табл. 5.1 для n = 3.
Число всевозможных наборов значений переменных составляет N=2n. Число различных функций, которые могут быть записаны в таблице, равно 2N.
Таблица. 1
x1
x2
x3
f
Второй способ описания функции состоит в том. что перечисляются наборы значений, на которых функция равна 1 (множество Т1), или равна 0 (множество Т0).
Для приведённого примера функцию можно представить как Т1={001,010,100, 111}.
Третий способ описания – представление функций в виде вектора. Так как порядок перечисления наборов входных переменных установлен, то достаточно указать только столбец функции. Для приведенного примера это будет вектор <01101001> .
Определение. Булева функция существенно зависит от переменной хi, если найдутся два набора значений переменных, отличающиеся только i-й компонентой, на которых значения функции не совпадают. Переменная, от которой функция существенно не зависит, называется несущественной или мнимой для данной функции.
ПримерПример. Пусть функция на наборах значений переменных <00110> и <01110> равна, соответственно, 1 и 0. Эта функция существенно зависит от второй переменной, потому что её значение на этих наборах определяется только значением этой переменной.
Будем считать, что функция не изменится, если в нее добавить или из нее убрать любое количество несущественных переменных.
Таблица. 2
x
x
`x
Среди четырех функций одной переменной, приведенных в табл.5.2, две функции, первая и последняя, являются константами (не зависящими ни от одной переменной). Их обозначают соответственно как 0и 1. Вторая функция повторяет переменную. Третья противоположна ей, называется инверсией и обозначается `xx.
Пусть [n] – число функций, существенно зависимых от n переменных. Тогда [1] = 2, [0] = 2. Для любого n это число можно подсчитать по рекуррентной формуле
Здесь N=2n, первая компонента – число функций от n переменных, из которого последовательно для i=0,1,..., n-1 вычитаются произведения числа функций, существенно зависимых от i переменных, на число способов, которыми можно выбрать i переменных из n.
Так, для n = 2 [2]=16-2-2×2=10. Для n=3 [3]=256-2-3×2-3×10=218.