русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Дифференциальное исчисление функции


Дата добавления: 2013-12-24; просмотров: 871; Нарушение авторских прав


одной переменной.

Производная функции, ее геометрический и физический смысл.

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

 

 

у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b Dx

0 x0 x0 + Dx x

 

 

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

,

 

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

 

Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.

Уравнение касательной к кривой:

Уравнение нормали к кривой: .

 

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.

 

Односторонние производные функции в точке.

 

 

Определение. Правой (левой) производной функции f(x) в точке х = х0 называется правое (левое) значение предела отношения при условии, что это отношение существует.

 

 

Если функция f(x) имеет производную в некоторой точке х = х0, то она имеет в этой точке односторонние производные. Однако, обратное утверждение неверно. Во- первых функция может иметь разрыв в точке х0, а во- вторых, даже если функция непрерывна в точке х0, она может быть в ней не дифференцируема.

 

Например: f(x) = ïxï- имеет в точке х = 0 и левую и правую производную, непрерывна в этой точке, однако, не имеет в ней производной.



 

Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.

Понятно, что это условие не является достаточным.

 

Основные правила дифференцирования.

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

 

1) (u ± v)¢ = u¢ ± v¢

2) (u×v)¢ = u×v¢ + u¢×v

3), если v ¹ 0

 

Эти правила могут быть легко доказаны на основе теорем о пределах.

 

 

Производные основных элементарных функций.

1)С¢ = 0; 9)

2)(xm)¢ = mxm-1; 10)

3) 11)

4) 12)

5) 13)

6) 14)

7) 15)

8) 16)

 

Производная сложной функции.

 

 

Теорема.Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f.

Тогда

 

Доказательство.

 

( с учетом того, что если Dx®0, то Du®0, т.к. u = g(x) – непрерывная функция)

 

Тогда

Теорема доказана.

 

 

Дифференциал функции

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢(x)Dx, т.е. f¢(x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢(x)Dx или

dy = f¢(x)dx.

Можно также записать:

 

Геометрический смысл дифференциала.

y

f(x)

K

dy

M Dy

L

 

a

x x + Dx x

 

 

Из треугольника DMKL: KL = dy = tga×Dx = y¢×Dx

Таким образом, дифференциал функции f(x) в точке х равен приращению ординаты касательной к графику этой функции в рассматриваемой точке.

 

Свойства дифференциала.

 

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке х, то непосредственно из определения дифференциала следуют следующие свойства:

 

1) d(u ± v) = (u ± v)¢dx = u¢dx ± v¢dx = du ± dv

 

2) d(uv) = (uv)¢dx = (u¢v + v¢u)dx = vdu + udv

3) d(Cu) = Cdu

 

4)

 

Дифференциал сложной функции.

Инвариантная форма записи дифференциала.

Пусть y = f(x), x = g(t), т.е. у - сложная функция.

Тогда dy = f¢(x)g¢(t)dt = f¢(x)dx.

 

Видно, что форма записи дифференциала dy не зависит от того, будет ли х независимой переменной или функцией какой- то другой переменной, в связи с чем эта форма записи называется инвариантной формой записи дифференциала.

 

Однако, если х - независимая переменная, то

dx = Dx, но

если х зависит от t, то Dх ¹ dx.

 

Таким образом, форма записи dy = f¢(x)Dx не является инвариантной.

 

Пример. Найти производную функции.

 

Сначала преобразуем данную функцию:

 

Пример. Найти производную функции .

 

 

Пример. Найти производную функции

 

Пример. Найти производную функции

 

 

Пример. Найти производную функции

 

 

Применение дифференциала к приближенным вычислениям.

Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Также можно воспользоваться формулой

 

Тогда абсолютная погрешность

Относительная погрешность

 

 

Раскрытие неопределенностей.

Правило Лопиталя.

(Лопиталь (1661-1704) – французский математик)

 

 

К разряду неопределенностей принято относить следующие соотношения:

 

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

 

 

Пример: Найти предел .

 

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + ; g¢(x) = ex;

 

;

 

Пример: Найти предел .

; ;

.

 

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел .

 

; ;

; ;

; ;

 

Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

 

 

Пример: Найти предел .

 

; ;

- опять получилась неопределенность. Применим правило Лопиталя еще раз.

 

; ;

- применяем правило Лопиталя еще раз.

 

; ;

;

 

Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

 

Пример: Найти предел .

 

Здесь y = xx, lny = xlnx.

Тогда . Следовательно

 

Пример: Найти предел .

 

; - получили неопределенность. Применяем правило Лопиталя еще раз.

; ;

 

Производные и дифференциалы высших порядков.

Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Если найти производную функции f¢(x), получим вторую производнуюфункции f(x).

т.е. y¢¢ = (y¢)¢ или .

 

Этот процесс можно продолжить и далее, находя производные степени n.

.

 

 

Общие правила нахождения высших производных.

Если функции u = f(x) и v = g(x) дифференцируемы, то

 

1) (Сu)(n) = Cu(n);

2) (u ± v)(n) = u(n) ± v(n);

3)

.

Это выражение называется формулой Лейбница.

 

Также по формуле dny = f(n)(x)dxn может быть найден дифференциал n- го порядка.

 

Исследование функций с помощью производной.

Возрастание и убывание функций.

Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 

Доказательство.

1) Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0,

тогда:

 

2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

 

Тогда по теореме Лагранжа: f(x2) – f(x1) = f¢(e)(x2 – x1), x1 < e < x2

По условию f¢(e)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

 

Теорема доказана.

 

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

 

Доказанную выше теорему можно проиллюстрировать геометрически:

 

y y

 

j j j j

x x

 

 

Точки экстремума.

 

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

 

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 



<== предыдущая лекция | следующая лекция ==>
 | Определение. Точки максимума и минимума функции называются точками экстремума.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.022 сек.