русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция 16


Дата добавления: 2013-12-24; просмотров: 1559; Нарушение авторских прав


Контроллер (модель) типа Такаги-Сугено

 

Мы видели, что заключения в лингвистических моделях контроллеров являются нечеткими терм-множествами, однако они могут быть и четкими величинами, линейной комбинацией или даже нелинейной функцией четких входных сигналов. Общая структура N базовых правил Такаги-Сугено (ТС)для контроллера с r входами и одним выходом имеет следующий вид

Если e1 есть A1i, e2 есть A2i,…,er есть Ari, то yi = gi(e1, e2,…, er), .

 

Здесь yi выход (заключение) i-го правила, gi четкаяфункция входов ei, , которые в противоположность лингвистической модели всегда представляют собой четкие переменные. Простой пример (N=1).

Если ошибка есть Нуль и скорость ее изменения есть Нуль, то выход u=c,

 

где cне нечеткая (четкая) постоянная.

Эта модель называется моделью ТС нулевого порядка, и она идентична использованию синглтонов в заключениях правил, т.е. синглтонной модели. Несколько более сложное правило выглядит так:

 

Если ошибка есть Нуль и скорость ее изменения есть Нуль, то выход

u = a*( ошибка e) + b*( скорость изменения ошибки ce) + d,

 

где a, bиd– постоянные.

Это модель ТС первого порядка с одним правилом (N=1). Инференция с несколькими правилами осуществляется обычным способом, т.е. степень истинности (возбуждающая сила), вычисляется для каждого правила. Однако в отличие от рассмотренного ранее метода Мамдани заключение каждого правила является линейной функцией входов, например, ошибки и скорости ее изменения

 

.

 

Заключение (выход) каждого правила можно рассматривать как мобильный синглтон, т. е. как синглтон, позиция которого не фиксирована, а зависит от текущих значений ошибки и скорости ее изменения. Выход (заключение) всех правил в этом методе в результате дефаззификации определяется как взвешенное среднее значение вкладов (метод центра тяжести), вносимых каждым правилом



.

 

Такой контроллер, можно сказать, осуществляет нелинейную интерполяцию выходных сигналов N линейных контроллеров (рис. 1), каждый из которых в соответствии с одним из базовых правил вырабатывает сигнал, линейно зависящий, скажем, от ошибки и ее скорости изменения. При этом вклад каждого линейного контроллера в выходной сигнал нелинейного контроллера зависит от степени перекрытии ФП терм-множества входа. Это свойство весьма полезно для применения в нелинейных системах управления, где каждый контроллер работает лишь в отведенном ему

Рис. 1

подпространстве всего пространства состояний. Можно сказать, что базовые правила осуществляют плавную интерполяцию между плоскостями (в частном случае для одного входа (r=1) между прямыми линиями, см. рис. 2,а), наклон которых определяется коэффициентами линейных контроллеров.

Рис. 2,а

 

 

На рис. 2,б в качестве примера для N=4, r=2 показаны желтым цветом плоскости управления для 4-х линейных контроллеров и поверхность управления для контроллера Такаги-Сугено первого порядка при двух термах для каждого входа с трапециидальными функциями принадлежности.

Рис. 2,б

Заметим, что возможно применение моделей ТС более высокого порядка, чем первый.

Если ФП терм входов определены автономно, кроме участков перекрытия друг с другом, и параметры заключений , соответствуют локальной аппроксимации функции u=f(e), r=1, N=3, модель ТС можно рассматривать как устройство, осуществляющее гладкую аппроксимацию этой функции (рис. 2,а).



<== предыдущая лекция | следующая лекция ==>
Точная настройка нелинейного нечеткого контроллера | Модель Такаги-Сугено как квазилинейное устройство


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.