Статистический анализ данных — основное предназначение SPSS (в отличие, например, от Microsoft Excel или Microsoft Access). Графическая подсистема данного программного комплекса, внешний вид создаваемых отчетов и возможности электронной таблицы оставляют желать лучшего; пользовательский интерфейс рассчитан на лиц, хорошо знакомых со статистикой. Некоторые статистические процедуры (например, множественный дисперсионный анализ по методу Фишера) вызываются исключительно при помощи программного синтаксиса (Syntax), работа с которым требует определенных навыков программирования. Но все же, несмотря на эти недостатки, в настоящее время SPSS является одной из лучших программ для проведения профессионального статистического анализа в самых различных областях человеческой деятельности: в бизнесе, психологии, медицине и т. д.
Данный раздел знакомит читателя с основными статистическими процедурами и методами статистического моделирования, наиболее часто применяемыми в маркетинговых исследованиях. Практически все описываемые статистические функции могут применяться для решения нескольких задач. В этом смысле предлагаемое общепринятое разделение методов статистического анализа на описательный анализ, анализ различий, ассоциативный и классификационный анализ весьма условно и отражает лишь общие тенденции их использования именно в маркетинговых исследованиях. Прежде чем приступить к рассмотрению статистических функций SPSS, сделаем одно существенное отступление необходимое для понимания всех последующих разделов этого пособия.
Одним из центральных понятий в статистике является статистическая значимость (р). Именно на основании статистической значимости в большинстве процедур SPSS проверяется практическая пригодность построенных моделей. По сути, статистическая значимость — это вероятность наступления ненаступления исследуемого события. Уровень р ≤ 0,05 часто используется в качестве критерия установления статистической значимости. Он означает, что с вероятностью 95 % можно утверждать: исследуемое событие произошло неслучайно, то есть связано с какой-то системой. В табл. 2.1 представлен наиболее распространенный способ интерпретации различных уровней значимости в маркетинговых исследованиях.
Таблица 2.1. Интерпретация уровней значимости
Уровень статистической значимости, р
Статистическая интерпретация
Обозначение в SPSS
р < 0,001
Максимально значимая
***
0,001 ≤ р ≤ 0,01
Очень значимая
**
0,01 < р ≤0,05
Значимая
*
0,05 < р ≤ 0,10
Слабо значимая
р > 0,10
Незначимая
В некоторых случаях (например, t-тесты) статистическая значимость в SPSS может быть одно- (1-tailed Sig.) или двухсторонней (2-tailed Sig.). Двухсторонняя значимость показывает, отличается ли значительно среднее значение первой исследуемой переменной от среднего значения второй — без указания направления этого различия, положительного или отрицательного. Односторонняя значимость показывает только направление, в котором второе исследуемое среднее отличается от первого. Второй тип значимости (односторонняя) при анализе данных маркетинговых исследований используется редко, и именно двухсторонняя значимость выводится SPSS по умолчанию. Таким образом, на практике нет необходимости обращать внимание на тип значимости, выводимой SPSS: она всегда будет показывать статистическую значимость исследуемого события1.
Целью описательного анализа является систематизация имеющихся данных. В рамках данной задачи происходит построение линейных распределений, а также характеристика переменных в различных статистических аспектах: расчет среднего, медианы, моды и т. п. Линейные (общие) распределения позволяют подсчитать количество респондентов, указавших тот или иной вариант ответа на рассматриваемый вопрос.
Построение линейных распределений обычно является первым шагом в статистическом анализе данных. При помощи линейных распределений становится возможным систематизировать ответы респондентов. В табл. 2.2 представлены основные характеристики переменных, участвующих в анализе.
Таблица 2.2. Основные характеристики переменных, участвующих в линейных распределениях