русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теорема. Степенной ряд равномерно сходится внутри интервала сходимости.


Дата добавления: 2013-12-24; просмотров: 1324; Нарушение авторских прав


Определение радиуса и интервала сходимости степенного ряда.

Зафиксируем некоторое значение x и запишем ряд из модулей членов степенного ряда

. Это – знакоположительный числовой ряд. Применим к нему признак Даламбера или радикальный признак Коши.

Применяя признак Даламбера, имеем

. Отсюда .

Поэтому .

Применяя радикальный признак Коши, имеем

.

 

Так определяется радиус сходимости степенного ряда.

Затем исследуется сходимость ряда на границе интервала сходимости, в точках Эти точки подставляются в исходный ряд, ряд становится обычным числовым рядом и исследуется стандартными методами для числовых рядов.

 

Пример. .

Составим ряд из модулей , применим радикальный признак Коши .

Радиус сходимости R=5, интервал сходимости (-2, 8). Исследуем сходимость ряда на границе, подставляя точки x= -2, в исходный ряд..

В точке x = -2 имеем ряд - гармонический ряд, он расходится.

 

В точке x = 8 имеем ряд - сходящийся (по признаку Лейбница) знакочередующийся ряд.

 

Область сходимости исходного ряда (-2, 8].

 

 

Доказательство. Пусть . Выберем , например . На интервале и в точке x1 степенной ряд сходится абсолютно, так как этот интервал лежит внутри интервала сходимости. Тогда (точно так же, как в доказательстве теоремы Абеля оценим ,

где (не зависит от ).

Тогда в области степенной ряд будет сходиться равномерно по признаку Вейерштрасса (члены ряда мажорируются членами бесконечно убывающей геометрической прогрессии).

 

Следствие.Внутри интервала сходимости справедливы теоремы о непрерывности суммы ряда, о почленном интегрировании и дифференцировании ряда.

 

Теорема.При почленном дифференцировании и интегрировании степенного ряда его радиус сходимости не меняется.

 

Доказательство. Рассмотрим ряд из модулей членов степенного ряда (это – знакоположительный числовой ряд в конкретной точке) и определим радиус сходимости по признаку Даламбера.



.

Продифференцируем почленно степенной ряд , перейдем к ряду из модулей и найдем радиус сходимости по признаку Даламбера.

.

Таким образом, при почленном дифференцировании радиус сходимости степенного ряда не меняется. Он не меняется и при почленном интегрировании, иначе он изменился бы при почленном дифференцировании.

 

 



<== предыдущая лекция | следующая лекция ==>
Радиус сходимости и интервал сходимости степенного ряда. | Разложение в ряд Маклорена основных элементарных функций.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.045 сек.