русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Соленоидальное поле и его свойства.


Дата добавления: 2013-12-24; просмотров: 1616; Нарушение авторских прав


Свойства дивергенции.

Инвариантное определение дивергенции.

 

Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестность VM – шар радиуса r с центром в точке M. Обозначим - ее границу – сферу радиуса r. По теореме о среднем для тройного интеграла

(по формуле Остроградского – Гаусса).

Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точке M.

. Это и есть инвариантное определение дивергенции.

Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если >0) или стока (если <0) векторного поля в точке M.

Если >0, то точка M – источник векторного поля, если <0, то точка M – сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».

 

Пример. Определить расположение источников и стоков векторного поля . Выяснить, является ли точка M(1,2,3) источником или стоком.

. Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0 – стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M – источник, так как .

 

1) Линейность.

 

.

2) , где - постоянное векторное поле.

3) , где - скалярное поле.

= = .

Векторное поле называется соленоидальным в области V, если в любой точке M этой области



<== предыдущая лекция | следующая лекция ==>
Векторное поле. | Свойства соленоидального поля.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.