Свойства дивергенции.
Инвариантное определение дивергенции.
Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестность VM – шар радиуса r с центром в точке M. Обозначим
- ее границу – сферу радиуса r. По теореме о среднем для тройного интеграла
(по формуле Остроградского – Гаусса).
Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точке M.
. Это и есть инвариантное определение дивергенции.
Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если
>0) или стока (если
<0) векторного поля в точке M.
Если
>0, то точка M – источник векторного поля, если
<0, то точка M – сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».
Пример. Определить расположение источников и стоков векторного поля
. Выяснить, является ли точка M(1,2,3) источником или стоком.
. Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0 – стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M – источник, так как
.
1) Линейность. 


.
2)
, где
- постоянное векторное поле.

3)
, где
- скалярное поле.
=
=
.
Векторное поле
называется соленоидальным в области V, если в любой точке M этой области 
