Лекция 6. Формула Грина.
Теорема (формула) Грина. Пусть G – плоская односвязная область с кусочно-гладкой границей L. Пусть функции P(x, y), Q(x, y) непрерывны и имеют непрерывные частные производные по своим переменным в области G и на L.
Тогда справедлива формула Грина
.
Доказательство. 1) Назовем плоскую область D (в плоскости OXY) правильной, если любая прямая, параллельная координатной оси (OX или OY) пересекает область не более, чем в двух точках. Можно показать, что область G можно представить как объединение конечного числа правильных областей
.
Тогда по свойству аддитивности двойной интеграл в правой части формулы Грина равен сумме двойных интегралов по правильным областям. Криволинейный интеграл в левой части равен сумме криволинейных интегралов по границам правильных областей, так как криволинейные интегралы по общим границам любых правильных областей различны по знаку из-за различных направлений обхода границы и взаимно уничтожаются при суммировании.
Поэтому доказательство может быть проведено для правильной области G.
2) Пусть G – правильная область. Так как P, Q могут быть произвольными функциями, то формула Грина сводится двум формулам
и
, каждую из которых надо доказать. Докажем первую формулу, вторая доказывается аналогично.
По свойству 3 двойного интеграла площадь области D можно вычислить по формуле
. Поэтому достаточно выбрать P, Q так, чтобы
, чтобы с помощью криволинейного интеграла по формуле Грина можно было бы вычислять площадь области.
Например, можно выбрать Q=x, P=0. Тогда
. Можно выбрать Q=0, P=y, тогда
. Очень полезна бывает симметричная формула при
.
Пример. Вычислить площадь эллипса с полуосями a, b 
.