1.1 Понятия об электронной системе обработки информации. Цифровая система на “жёсткой” и “гибкой” логике.
1.2 Микропроцессор. Микропроцессорная система.
Принципы построения МП – систем.
1.3 Шинная структура связей.
1.4 Режимы работы МП-систем.
1.5 Архитектура МП-систем.
1.6 Типы МП-систем.
1.7 Контрольные вопросы.
В этой лекции рассматриваются - базовая терминология микропроцессорной техники, принципы организации микропроцессорных систем, структуры связей, режимы работы и основные типы микропроцессорных систем.
Ключевые слова:микропроцессор, микропроцессорная система, шина, архитектура, память, устройство ввода-вывода.
1.1 Понятия об электронной системе обработки информации. Цифровая система на “жёсткой” и “гибкой” логике.
Микропроцессорная техника сейчас все активнее входит в нашу жизнь, постепенно замещая и вытесняя традиционную цифровую технику на "жесткой логике". Универсальность, гибкость, простота проектирования аппаратуры, практически неограниченные возможности по усложнению алгоритмов обработки информации — все это обещает микропроцессорной технике большое будущее. На долю традиционной цифровой техники остаются только узлы и устройства, требующие максимального быстродействия, а также устройства с простейшими алгоритмами обработки информации. Обычная цифровая техника сегодня применяется для увеличения возможностей микропроцессорных систем, для их сопряжения с внешними устройствами, для увеличения их возможностей, то есть играет вспомогательную роль. Таким образом, традиционную цифровую технику в самом недалеком будущем, по-видимому, ждет участь аналоговой техники, область применения которой в своё время сильно сузилась с появлением цифровой.
Ведём несколько основных определений.
• Электронная система— в данном случае это любой электронный узел, блок, прибор или комплекс, производящий обработку информации.
• Аналоговая система –это частный случай электронной системы, производящей обработку информации представленной в аналоговом виде (ток, напряжение и т.д.).
• Цифровая система –это частный случай электронной системы, производящей обработку информации представленной в цифровом виде.
Характерная особенность традиционной цифровой системы состоит в том, что алгоритмы обработки и хранения информации в ней жестко связаны со схемотехникой системы. То есть изменение этих алгоритмов возможно только путем изменения структуры системы, замены электронных узлов, входящих в систему, и/или связей между ними. Например, если нам нужна дополнительная операция суммирования, то необходимо добавить в структуру системы лишний сумматор. Или если нужна дополнительная функция хранения кода в течение одного такта, то мы должны добавить в структуру еще один регистр. Естественно, это практически невозможно сделать в процессе эксплуатации, обязательно нужен новый производственный цикл проектирования, изготовления, отладки всей системы. Именно поэтому традиционная цифровая система часто называется системой на «жесткой логике».
Рис. 1.1.Электронная система.
Любая система на «жесткой логике» обязательно представляет собой специализированную систему, настроенную исключительно на одну задачу или (реже) на несколько близких, заранее известных задач. Это имеет свои бесспорные преимущества.
Во-первых, специализированная система (в отличие от универсальной) никогда не имеет аппаратурной избыточности, то есть каждый ее элемент обязательно работает в полную силу (конечно, если эта система грамотно спроектирована).
Во-вторых, именно специализированная система может обеспечить максимально высокое быстродействие, так как скорость выполнения алгоритмов обработки информации определяется в ней только быстродействием отдельных логических элементов и выбранной схемой путей прохождения информации. А именно логические элементы всегда обладают максимальным .на данный момент быстродействием.
Но в то же время большим недостатком цифровой системы на «жесткой логике» является то, что для каждой новой задачи ее надо проектировать и изготавливать заново.
Это процесс длительный, дорогостоящий, требующий высокой квалификации исполнителей. А если решаемая задача вдруг изменяется, то вся аппаратура должна быть полностью заменена. В нашем быстро меняющемся мире это довольно расточительно.
Путь преодоления этого недостатка довольно очевиден: надо построить такую систему, которая могла бы легко адаптироваться под любую задачу, перестраиваться с одного алгоритма работы на другой без изменения аппаратуры.
И задавать тот или иной алгоритм мы тогда могли бы путем ввода в систему некой дополнительной управляющей информации, программыработы системы (рис. 1.2). Тогда система станет универсальной, или программируемой, не жесткой, а гибкой. Именно это и обеспечивает микропроцессорная система.
Микропроцессорной системойназываютвычислительную, контрольно-измерительную или управляющую систему, в которой основным устройством обработки информации есть микропроцессор.