русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция 7 - Визуальный анализ данных


Дата добавления: 2013-12-24; просмотров: 2014; Нарушение авторских прав


По данным университета Беркли ежегодный прирост информации в мире составляет 1 миллион терабайт (1 экзобайт).
Причём большая часть информации представлена в цифровом виде.
Это означает, что за последующие три года прирост информации превысит объём информации, накопленный за всю историю человечества до этого момента.
Откуда же берётся такое большое число данных?
Различные электронные датчики постоянно регистрируют такие процессы как использование кредитной карты, разговор по телефону и т.п.
Причём многие данные сохраняются с большой степенью детализации.
Делается это потому, что для людей представляет ценность эта информация.
Она может содержать в себе скрытые знания, закономерности и потому, при соответствующем анализе, способна оказать влияние при принятии решений в различных областях человеческой деятельности.
Существует множество способов поиска скрытых закономерностей в данных машиной, алгоритмами, но также не стоит упускать из вида возможности человека по анализу данных.
Полезно сочетать огромные вычислительные ресурсы современных компьютеров с творческим и гибким человеческим мышлением.
Визуальный анализ данных призван вовлечь человека в процесс отыскания знаний в данных.
Основная идея заключается в том, чтобы представить большие объёмы данных в такой форме, где человек мог бы увидеть то, что трудно выделить алгоритмически.
Чтобы человек смог погрузиться в данные, работать с их визуальным представлением, понять их суть, сделать выводы и напрямую взаимодействовать с данными.
Из-за сложности информации это не всегда возможно и в простейших графических видах представления знаний, таких как деревья решений, дейтаграммы, двумерные графики и т.п.
В связи с этим возникает необходимость в более сложных средствах отображения информации и результатов анализа.

С помощью новых технологий пользователи способны оценивать: большие объекты и маленькие, далеко они находятся или близко.
Пользователь в реальном времени может двигаться вокруг объектов или кластеров объектов и рассматривать их со всех сторон.
Это позволяет использовать для анализа естественные человеческие перцепционные навыки в обнаружении неопределённых образцов в визуальном трёхмерном представлении данных.



Визуальный анализ данных особенно полезен, когда о самих данных мало что известно и цели исследования до конца не понятны.
За счёт того, что пользователь напрямую работает с данными, представленными в виде визуальных образов, которые он может рассматривать с разных сторон и под любыми углами зрения, в прямом смысле этого слова, он может получить дополнительную информацию, которая поможет ему более чётко сформулировать цели исследования.

Таким образом, визуальный анализ данных можно представить как процесс генерации гипотез. При этом сгенерированные гипотезы можно проверить или автоматическими средствами (методами статистического анализа или методами Data Mining), или средствами визуального анализа.
Кроме того, прямое вовлечение пользователя в визуальный анализ имеет два основных преимущества перед автоматическими методами:

  • визуальный анализ данных позволяет легко работать с неоднородными и зашумлёнными данными, в то время как не все автоматические методы могут работать с такими данными и давать удовлетворительные результаты;
  • визуальный анализ данных интуитивно понятен и не требует сложных математических или статистических алгоритмов.


Визуальный анализ данных обычно выполняется в три этапа:

  • беглый анализ - позволяет идентифицировать интересные шаблоны и сфокусироваться на одном или нескольких из них;
  • увеличение и фильтрация - идентифицированные на предыдущем этапе шаблоны отфильтровываются и рассматриваются в большем масштабе;
  • детализация по необходимости - если пользователю нужно получить дополнительную информацию, он может визуализировать более детальные данные.


<== предыдущая лекция | следующая лекция ==>
Метод WaveCluster | Характеристики средств визуализации данных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.