русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основные понятия теории графов


Дата добавления: 2013-12-24; просмотров: 897; Нарушение авторских прав


Левый берег

Правый берег

Коэффициент напряженности работ

 

Характеризует степень свободы в сроках начала и окончания работ, не лежащих на критическом пути

 

Kн = t(Lij)max - t(штрих)(Lкр)/ (t(Lкр) - t(штрих)(Lкр))

 

 

 
 

 


 

Существовала популярная задача: можно ли, выйдя из дома, вернуться обратно, пройдя по каждому мосту ровно один раз?

Размышляя над этой задачей, Эйлер для удобства рассуждений изобразил ее в виде простой геометрической фигуры – из точек, соединенных линиями. Каждый берег и остров он изобразил точками, а мосты – линиями, их соединяющими. Получилась фигура, которая сейчас называется графом:

 
 

 

 


Задачу о мостах Эйлер сформулировал так: можно ли, начав движение из любой вершины, и двигаясь вдоль линий, пройти по каждой линии точно по одному разу и вернуться в исходную вершину?

В современной постановке задача звучит так: существует ли в данном мультиграфе простой цикл, содержащий все ребра?

В своей работе Эйлер

1) доказал, что эта задача не имеет решения;

2) сформулировал и доказал необходимое и достаточное условие существования в произвольном графе такого (Эйлерова) цикла.

Потом о теории графов забыли, чтобы вспомнить в 19 веке, когда возникли задачи исследования электрических цепей, моделей кристаллов и структур молекул. Новый всплеск интереса к теории графов приходится на средину 20 века. Выяснилось, что к задачам о графах сводится множество производственных и научных задач – прокладка трасс, проектирование систем управления и интегральных схем, построение логических схем в экономике, химии, биологии. В терминах теории графов формулируются основные алгоритмы, связанные с перебором вариантов. Без преувеличения можно сказать, что теория графов – язык дискретной математики.



 

Изображение графа в виде точек и линий – это лишь наиболее наглядный способ их представления. Формально граф определяется так: граф – это пара объектов G = (V, E), где V – некоторое конечное множество, Е – отношение на V: E ÍV´V. V – множество вершин, E – множество ребер.

Ребро принято обозначать либо как элемент Е: e1, …, em, ej ÎE, либо указанием его начальной и конечной вершины (vi, vj). Второе обозначение не всегда однозначно, например, в задаче о мостах обозначению (v1, v3) соответствуют два различных ребра.

Def. Графом без кратных ребер называется граф, в котором для любых i, j существует единственное ребро ek = (vi, vj). Граф с кратными ребрами называется еще мультиграфом.

Def. Пусть u, v – вершины, е = (u, v) – соединяющее их ребро. Тогда вершина u и ребро e инцидентны друг другу (также как и v и е). Два ребра, инцидентные одной вершине называются смежными. Две вершины, инцидентные одному ребру также называются смежными.

Вершины, инцидентные одному ребру, могут быть равноправными, т.е. записи (u, v) и (v, u) эквивалентны, а могут быть неравноправными, т.е. важен порядок записи. Направленные ребра называются дугами, а содержащий их граф – ориентированным (орграфом) Направленные ребра на рисунке снабжаются стрелками – от начала к концу. Граф, в котором все ребра не направлены, называется неориентированным. Ребро вида (v, v) называется петлей.

Def. Граф называется полным, если любые его две вершины смежны, E = V´ V. 0-граф – граф без ребер. Изолированная вершина – не смежная ни с одной другой вершиной.

Def. Дополнение графа , где = (V´V) \ E.



<== предыдущая лекция | следующая лекция ==>
Критический путь. | Пример 1.1.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.112 сек.