русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм приведения к нормальной форме


Дата добавления: 2013-12-24; просмотров: 1570; Нарушение авторских прав


КНФ есть формула, равносильная формуле исходной логической функции и записанная в виде конъюнкции элементарных дизъюнкций, построенных на пропозициональных переменных, т.е.

ДНФ формула есть формула, равносильная формуле исходной логической функции и записанная в виде дизъюнкции элементарных конъюнкций, построенных на пропозициональных переменных, т.е.

Нормальные формы формул

В алгебре высказываний используют две нормальные фор­мы: дизъюнктивную и конъюнктивную нормальные формы формулы (ДНФ и КНФ).

F = K1Ú K2Ú K3Ú . . ., где Ki = ( A&B&C& . . .).

В элементарной коньюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности F&F=F. В ДНФ нет двух одинаковых элементарных коньюнкций, т.к. по закону идемпотентности FÚF=F. Если одна из элементарных коньюнкций содержит F и ù F, то элементарную коньюнкцию следует удалить, т.к. F&ù F=л.

Пример: F=F1&(F1ÚF2) ÚF2&(F1Úù F2).

1) по закону дистрибутивности:

F=F1&F1ÚF1&F2ÚF1&F2ÚF2&ù F2;

2) по законам идемпотентности и противоречия:

F=F1ÚF1&F2;

3) по закону поглощения:

F=F1.

F = D1& D2& D3& . . . , где Di = ( AÚBÚCÚ . . . ).

В элементарной дизьюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности FÚF=F. В КНФ нет двух одинаковых элементарных дизьюнкций, т.к. по закону идемпотентности F&F=F. Если одна из элементарных дизьюнкций содержит F и ù F, то её следует удалить,

т.к. FÚù F = и.

Наибольшее распространение в логике высказываний по­лучили формулы вида КНФ, элементарные дизъюнкции которых Di принято называть дизъюнктами, а члены каждого дизъюнкта A, B, C –атомами.



Шаг 1. Устранить логические связки “«” и “®” всюду по правилам:

F1 « F2 =(F1®F2)&(F2®F1)=(ù F1Ú F2)&(ù F2Ú F1)=

=(ù F1&ù F2)Ú( F1& F2);

F1 ® F2 =ù F1ÚF2 =ù (F1 &(ù F2)).

Шаг 2. Продвинуть отрицание до элементарной формулы (пропозициональной переменной) по правилам:

ù (ù F) = F ;

ù (F1Ú F2 ) = (ù F1) &(ù F2);

ù (F1&F2) = (ù F1)Ú(ù F2).

Шаг 3. Применить закон дистрибутивности:

a) для КНФ: F1Ú(F2 &F3) = (F1Ú F2)&(F1ÚF3);

b) для ДНФ: F1&(F2Ú F3) = (F1&F2)Ú(F1&F3).

Пример: Дана формула F=((F1®(F2ÚùF3))®F4).

Привести формулу к виду КНФ:

1) F=(ùF1Ú(F2Úù F3))®F4 ;

2) F=ù(ùF1Ú(F2ÚùF3))ÚF4 ;

3) F=(F1&(ù F2)& F3)ÚF4 ;

4) F=(F4ÚF1)&(F4Ú(ù F2)&F3);

5) F=(F4ÚF1)&(F4Úù F2)&(F4ÚF3).



<== предыдущая лекция | следующая лекция ==>
Выполнить преобразования для упрощения алгебраического выражения. | Алгоритм преобразования КНФ к виду СКНФ.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.