русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм цифровой подписи RSА


Дата добавления: 2013-12-24; просмотров: 1209; Нарушение авторских прав


Первой и наиболее известной во всем мире конкретной системой ЭЦП стала система RSА, математическая схема которой была разработана в 1977г. в Массачуссетском технологическом институте США.

Сначала необходимо вычислить пару ключей (секретный ключ и открытый ключ). Для этого отправитель (автор) электронных документов вычисляет два больших простых числа Р и Q, затем находит их произведение N = Р * Q и значение функции (N) = (Р-1)(Q-1).

Далее отправитель вычисляет число Е из условий:

Е (N), НОД (Е, (N)) =1

и число D из условий:

D < N, Е * D ≡ 1 (mod (N)).

Пара чисел (Е, N) является открытым ключом. Эту пару чисел автор передает партнерам по переписке для проверки его цифровых подписей. Число D сохраняется автором как секретный ключ для подписывания.

Обобщенная схема формирования и проверки цифровой подписи RSА показана на рисунке 6.3.3.1.

Рисунок 6.3.3.1 - Обобщённая схема цифровой подписи RSA

Допустим, что отправитель хочет подписать сообщение М перед его отправкой. Сначала сообщение М (блок информации, файл, таблица) сжимают с помощью хэш-функции h() в целое число m:

m = h(М).

Затем вычисляют цифровую подпись S под электронным документом М, используя хэш-значение m и секретный ключ D:

S = mD (mod N).

Пара (М, S) передается партнеру-получателю как электронный документ М, подписанный цифровой подписью S, причем подпись S сформирована обладателем секретного ключа D.

После приема пары (М, S) получатель вычисляет хэш-значение сообщения М двумя разными способами. Прежде всего он восстанавливает хэш-значение m', применяя криптографическое преобразование подписи S с использованием открытого ключа Е:

m' = SE (mod N).

Кроме того, он находит результат хэширования принятого сообщения М с помощью такой же хэш-функции h():

m = h(М).

Если соблюдается равенство вычисленных значений, т.е.



SE (mod N) = h(М),

то получатель признает пару (М,S) подлинной. Доказано, что только обладатель секретного ключа D может сформировать цифровую подпись S по документу М, а определить секретное число D по открытому числу Е не легче, чем разложить модуль N на множители.

Кроме того, можно строго математически доказать, что результат проверки цифровой подписи S будет положительным только в том случае, если при вычислении S был использован секретный ключ D, соответствующий открытому ключу Е. Поэтому открытый ключ Е иногда называют "идентификатором" подписавшего.

Недостатки алгоритма цифровой подписи RSА:

1. При вычислении модуля N ключей Е и D для системы цифровой подписи RSА необходимо проверять большое количество дополнительных условий, что сделать практически трудно. Невыполнение любого из этих условий делает возможным фальсификацию цифровой подписи со стороны того, кто обнаружит такое невыполнение. При подписании важных документов нельзя допускать такую возможность даже теоретически.

2. 3. Цифровая подпись RSА уязвима к так называемой мультипликативной атаке. Иначе говоря, алгоритм цифровой подписи RSА позволяет злоумышленнику без знания секретного ключа D сформировать подписи под теми документами, у которых результат хэширования можно вычислить как произведение результатов хэширования уже подписанных документов.



<== предыдущая лекция | следующая лекция ==>
Алгоритмы электронной цифровой подписи | Алгоритм цифровой подписи DSА


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.