По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:
• По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы – генерацию неизвестных решений (формирование объектов).
• По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях. Они осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата. Динамические системы допускают изменения, предусматривая возможность пересмотра в процессе решения полученных ранее результатов и данных.
• По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).
• По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).
Назначение экспертной системы: консультирование и обучение неопытных пользователей, ассистирование экспертам в решении задач, советы экспертам по вопросам из смежных областей знаний (интеграция источников знаний).
Классы решаемых задач в экспертной системе: интерпретация, диагностика, прогнозирование, проектирование, планирование, мониторинг, коррекция, управление.
При создании экспертных систем вначале создается ее прототип. Прототип экспертной системы – это расширяемая (изменяемая) на каждом последующем этапе версия базы знаний с возможной модификацией программных механизмов. Различают прототипы: демонстрационный, исследовательский, действующий, промышленный, коммерческий.
Далее для разработки экспертных систем необходимы следующие этапы: идентификация, концептуализация, формализация, реализация, тестирование, внедрение.
1) Этап идентификации проблемной области – определение требований к разрабатываемой ЭС, контуров рассматриваемой проблемной области (объектов, целей, подцелей, факторов), выделение ресурсов на разработку ЭС.
2) Этап концептуализации проблемной области – построение концептуальной модели, отражающей в целостном виде сущность функционирования проблемной области на объектном (структурном), функциональном (операционном), поведенческом ( динамическом) уровнях.
Метод представления (модель) знаний – это совокупность средств структурирования и обработки единиц знаний.
3) Этап формализации базы знаний – выбор метода представления знаний, в рамках которого проектируется логическая структура базы знаний. Методы представления знаний различаются характером представления объектного, функционального, поведенческого видов знаний и реализацией неопределенностей, т.е. ориентацией на определение структуры объектов или действий над ними, детерминированность или неопределенность, статику или динамику проблемной области.
4) Этап реализации ЭС представляет отображение структуры базы знаний в среде выбранного инструментального средства, а также настройка и/или доработка программных механизмов. Различают программные оболочки, инструментальные среды и языки представления знаний; универсальные инструментальные, проблемно-ориентированные и предметно-ориентированные инструментальные программные средства.
Во время этого этапа реализуется алгоритм выбора инструментального средства. Требования класса решаемых задач в части реализации объектов, операций и неопределенностей налагаются на возможности инструментальных средств по представлению выявленных особенностей знаний, в результате чего формируется ранжированный список инструментальных средств.
5) Этап тестирования оценивает экспертную систему с позиции двух критериев: точности и полезности. Точность работы: правильность заключений, адекватность базы знаний проблемной области, соответствие методов решения проблемы экспертным. Полезность: ответы на запросы пользователя; удобство интерфейса; объяснение получаемых результатов; надежность, адаптирумость, производительность и стоимость эксплуатации.
6) Этап внедрения и опытной эксплуатации – это переход от тестовых примеров к решению реальных задач.
На начальных этапах идентификации и концептуализации, связанных с определением контуров будущей системы, работают инженер знаний и эксперт.
На этапе тестирования это могут быть совершенно другие эксперты.
Оценивание экспертной системы осуществляется по набору тестовых примеров, как из предшествующей практики экспертов, так и специально подобранных ситуаций. Результаты тестирования подлежат статистической обработке, после чего делаются выводы о степени точности работы экспертной системы.
Следующий этап жизненного цикла экспертной системы – внедрение и опытная эксплуатация в массовом порядке без непосредственного контроля со стороны разработчиков и переход от тестовых примеров к решению реальных задач. Важнейшим критерием оценки становятся соотношение стоимости системы и ее эффективности. На этом этапе осуществляется сбор критических замечаний и внесение необходимых изменений.