русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока


Дата добавления: 2013-12-23; просмотров: 916; Нарушение авторских прав


Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то в началь­ный момент времени имел бы место бросок тока и момента, как показано на рисунках w=f(Ia) и w=f(M) пунктиром . В действительности Ф изменяется во времени. Поэтому ток якоря и момент двигателя будут изменяться по т.н. динамическим характеристикам (кривая1). Для расчета переходного процесса пренебрегаем индуктивностью якоря LЯ т.к. она мала по сравнению с индуктивностью LВ обмотки возбуждения. Бросок тока и момента будет тем больше, чем быстрее темп изменения Ф. Для получения расчетного выражения воспользуемся уравнением равновесия ЭДС в якорной цепи и уравнением момента.

Выразим коэффициенты “k” через номинальные параметры. Коэффициенты ЭДС

;

1) ; 2)

Определив из второго уравнения IЯ и подставив в первое, а также разделив полученное выражение на , получим

или в относительных единицах

3) , где ;

Это уравнение нелинейное и решить его непосредственно нельзя, т.к. f=f(t). При небольших пределах изменения Ф можно считать, что Ф изменяется по линейному закону, как показано на графике кривой намагничивания. Линейное изменение потока имеет место в случае, если , т.е. когда цепь машины не насыщена (здесь допускается некоторая погрешность). Закон изменения тока возбуждения при ненасыщенной магнитной цепи можно найти из уравнения равновесия ЭДС для цепи возбуждения

Отсюда , где

При закон изменения потока будет таким же . Это экспонента.

Для расчета строится кривая j=f(t) и разбивается на участки постоянной длительности. На каждом участке длительностью Dt поток j считается постоянным, равным среднему значению . Аналогично скорость двигателя в течении Dt считаем постоянной и равной среднему значению



Подставив значения и в уравнение 3 , решаем его относительно

 

 

Окончательная расчетная формула имеет вид

Расчет кривой скорости ведется с первого участка длительностью Dt, для которого известна и среднее значение потока . Приращение скорости на первом участке

Начальная скорость на втором участке длительностью Dt равна скорости в конце первого участка, т.е. . Аналогично определяется приращение скорости на втором участке и т.д. По рассчитанным приращениям строится кривая n=f(t), которая изображена на графике.

Для нахождения закона изменения тока JЯ в переходном режиме разделим обе части уравнения 1 на U

отсюда

Конечное значение тока якоря

Поскольку значения j и n для каждого участка длительностью Dt известны, можно построить кривую JЯ=f(t). Примерный вид этой кривой при Мc = const приведен на рис.

Закон изменения момента находится аналогично согласно уравнению движения

Если бросок тока при ослаблении f окажется недопустимым по условиям коммутации, изменение f следует осуществлять в несколько ступеней.

Расчет переходного процесса можно вести и в именованных величинах. Расчетное выражение для определения приращения скорости можно получить аналогично изложенному выше. Оно имеет вид

Расчет переходного процесса при усилении f производится аналогично, только кривая j=f(t) будет выглядеть так, как изображена на следующем рис.



<== предыдущая лекция | следующая лекция ==>
Электромагнитные переходные процессы в цепях возбуждения и форсирование процессов возбуждения | Переходные процессы при пуске и торможении электропривода с короткозамкнутым


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.21 сек.