Теоретической основой построения ЭВМ являются специальные математические дисциплины. Одной из них является алгебра логика или булева алгебра (Дж. Буль - английский математик прошлого столетия, основоположник этой дисциплины). Ее аппарат широко используют для описания схем ЭВМ, их оптимизации и проектирования.
Вся информация в ЭВМ представляется в двоичной системе счисления. Поставим в соответствие входным сигналам отдельных устройств ЭВМ соответствующие значенияхi(i=1,n), а выходным сигналам - значения функций yj(j=1,m) (рис.2.1).
Рис. 2.1. Представление схемы ЭВМ
В этом случае зависимостями
yj=f(x1,x2,…,xi,…,xn), (2.2)
где xi – i-й вход; n – число входов; yi – i-й выход; m – число выходов в устройстве,
можно описывать алгоритм работы любого устройства ЭВМ. Каждая такая зависимость у , является “булевой функцией, у которой число возможных состояний и каждой ее независимой переменной равно двум” (стандарт ISO 2382/2-76), т.е. функцией алгебры логики, а ее аргументы определены на множестве {0,1}. Алгебра логика устанавливает основные законы формирования и преобразования логических функций. Она позволяет представить любую сложную функцию в виде композиции простейших функций. Рассмотрим наиболее употребительные из них.
Известно, что количество всевозможных функций N от п аргументов выражается зависимостью
N=22n. (2.3)
При n=0 можно определить две основные функции (N=2), не зависящие от каких-либо переменных: у0 , тождественно равную нулю (у0=0), и у1 , тождественно равную единице ( у1=1). Технической интерпретацией функции у1=1 может быть генератор импульсов. При отсутствии входных сигналов на выходе этого устройства всегда имеются импульсы (единицы). Функция у0=0 может быть интерпретирована отключенной схемой, сигналы от которой не поступают ни к каким устройствам.
При п=1 зависимость (2.3) дает N=4. Представим зависимость значений этих функций от значения аргумента х в виде специальной таблицы истинности (табл. 2.4).
Таблица 2.4
Yj
Y0
Y1
Y2
Y3
x
Таблицы истинности получили такое название, потому что они определяют значение функции в зависимости от комбинации входных сигналов. В этой таблице, как и ранее,у0=0 и y1=1. Функция y2=х, а функция у3=x- (инверсия x).
Этим функциям соответствуют определенные технические аналоги. Схема, реализующая зависимость у2=х, называется повторителем, а схема y3=х - инвертором.
При п=2, N=l6, т.е. от двух переменных, можно построить шестнадцать различных функций. В табл. 2.5 представлена часть из них, имеющая фундаментальное значение при построении основных схем ЭВМ.