Системой счисления называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Систему счисления образует совокупность правил и приемов представления чисел с помощью набора знаков (цифр).
Различают позиционные и непозиционные системы счисления. В позиционных системах каждая цифра числа имеет определенный вес, зависящий от позиции цифры в последовательности, изображающей число. Позиция цифры называется разрядом. В позиционной системе счисления любое число можно представить в виде:
где ai – i-я цифра числа; k – количество цифр в дробной части числа; m - количество цифр в целой части числа; N – основание системы счисления.
Основание системы счисления N показывает, во сколько раз “вес” г-го разряда больше (i-1) разряда. Целая часть числа отделяется от дробной части точкой (запятой).
Пример 2.1.А10=37.25.
В соответствии с формулой (2.1)это число формируется из цифр с весами рядов:
А10=3*101+7*100+2*10-1+5*10-2.
Теоретически наиболее экономичной системой счисления является система с основанием е=2,71828..., находящимся между числами 2 и 3.
Во всех современных ЭВМ для представления числовой информации используется двоичная система счисления. Это обусловлено:
более простой реализацией алгоритмов выполнения арифметических и логических операций;
более надежной физической реализацией основных функций, так как они имеют всего два состояния (0 и 1);
экономичностью аппаратурной реализации всех схем ЭВМ.
При N=2 число различных цифр, используемых для записи чисел, ограничено множеством из двух цифр (нуль и единица). Кроме двоичной системы счисления широкое распространение получили и производные системы:
· двоичная- {0,1};
· десятичная, точнее двоично-десятичное представление десятичных чисел, - {0, 1,...,9};
· шестнадцатеричная - {0,1,2, ...9, А, В, С, D, Е, F}. Здесь шестнадцатеричная цифра А обозначает число 10,В-число 11, ...,F-число 15;
· восьмеричная (от слова восьмерик) - {0,1,2,3,4,5, б, 7}. Она широко используется во многих специализированных ЭВМ.
Восьмеричная и шестнадцатеричная системы счисления являются производными от двоичной, так как 16 = 24 и 8 = 23. Они используются в основном для более компактного изображения двоичной информации, так как запись значения чисел производится существенно меньшим числом знаков.