русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Нахождение приближающей функции в виде линейной функции


Дата добавления: 2013-12-23; просмотров: 1593; Нарушение авторских прав


Постановка задачи

Метод наименьших квадратов

Пусть данные некоторого эксперимента представлены в виде таблицы:

xi x1 x2 xn
yi y1 y2 yn (1)

Поставим задачу об отыскании аналитической зависимости между x и y, т.е. некоторой формулы y=f(x). При этом потребуем, чтобы график искомой функции изменялся плавно и не слишком уклонялся от экспериментальных данных. Поиск такой зависимости называют «сглаживанием» экспериментальных данных. Формулу y=F(x)эмпирической формулой или уравнением регрессии y на x.

 

Предположим, что приближающая функция y=F(x) имеет значения.

xi x1 x2 xn
(2)

Рассматривая совокупности (1) и (2) как координаты двух точек
n-мерного пространства, найдем расстояние между ними по евклидовой метрике

Потребуем, чтобы эта величина была наименьшей. Это равносильно тому, что сумма квадратов должна быть наименьшей:

или

Тогда задача приближения функции f формулируется следующим образом: для функции f, заданной таблицей, найти функцию F определенного вида так, чтобы сумма квадратов была наименьшей.

Рассмотрим приближающую функцию в виде F(x,a,b) = ax+b.

Наша задача – отыскать значения параметров a и b.

Рассмотрим функцию или

Задача сводится к отысканию минимума функции Ф(a,b). Используем необходимое условие экстремума: ; .

Учитывая, что , , получим систему вида:

Далее, или

Выразим значения a и b из системы уравнений:

Существует показатель, характеризующий тесноту линейной связи между X и Y. Это (выборочный) коэффициент корреляции. Он вычисляется по формуле:

Значение коэффициента корреляции всегда удовлетворяет соотношению: -1£r£1. Чем меньше отличается абсолютная величина r от единицы, тем ближе к линии регрессии располагаются экспериментальные точки.



Если коэффициент корреляции равен нулю, то говорят, что переменные X и Y некоррелированы.



<== предыдущая лекция | следующая лекция ==>
Вторая интерполяционная формула Ньютона | Приближение функций


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.133 сек.