Модальным является V разряд, так как он обладает наибольшей частотой ().
Место медианы в ряду: .
Медианным является IV разряд. Для определения медианы использовали накопленные частоты, которые получают последовательным суммированием частот. Накопленная частота для II разряда равна его частоте, для III разряда – это сумма частоты III разряда и накопленной частоте II разряда, то есть 22 + 10 = 32 и т.д.
При исчислении моды и медианы в интервальном ряду необходимо сначала определить интервал, в котором они находятся, среднее значение этого интервала соответствует их приближенному значению.
Пример.
Таблица 15
Суточный пробег (х)
90-130
130-160
160-190
190-230
230-270
Число автомобилей (f)
Накопленные частоты (F)
Модальным является интервал [130 – 160], среднее значение которого 145 км; Мо = 145 км.
Место медианы член. По накопленным частотам определяем медианный интервал [160 – 190] [Ме = 175 км].
Для определения моды в рядах с равными интервалами распределения модальный интервал определяется по наибольшей частоте, а в рядах с неравными интервалами – по наибольшей плотности распределения.
Для определения моды в рядах с равными интервалами используют формулу:
,
где – нижняя граница модального интервала;
– величина интервала;
– частоты предмодального, модального и послемодального интервала.
Моду можно определить графически по гистограмме. Для этого в самом высоком столбце гистограммы от границ 2-х смежных столбцов проводят линии, затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс и будет соответствовать моде.
f
x
M0
Для расчета медианы в интервальном ряду воспользуемся следующими формулами:
,
или ,
где – нижняя граница медианного интервала;
i – величина интервала медианного;
– порядковый номер медианы;
– частота, накопленная до медианного интервала;
– частота медианного интервала.
– верхняя граница медианного интервала;
– накопленная частота медианного интервала.
Медиану можно определить графически. Для этого строится кумулята. Для определения Ме высоту наибольшей ординаты делят пополам. Через полученную точку проводятся прямую, параллельную оси абсцисс до пересечения ее с кумулятой. Абсцисса точки пересечения и является Ме.
F
х
Наряду с медианой для более полной характеристики совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относят квартили и децили.
Квартили делят ряд по сумме частот на 4 равные части, а децили на 10 равных частей. Квартилей насчитывается три, а децилей - девять.
Расчёт этих показателей вариационном ряду аналогичен расчёту медианы. Он начинается с нахождения порядкового номера соответствующего варианта и определения по накопленным частотам того интервала, в котором этот вариант находится. Формулы для квартилей в интервальном вариационном ряду имеют следующий вид:
нижний (или первый квартиль)
,
верхний (или третий квартиль)
,
где – нижние границы соответствующих квартильных интервалов;
По соотношению между средней арифметической, модой и медианой можно судить о характере распределения. В симметричных распределениях все три показателя совпадают. Чем больше расхождение между модой и средней арифметической, тем больше асимметричен ряд.
Эмпирически установлено, что для умеренно асимметричных рядов разность между модой и средней арифметической примерно в 3 раза превышает разность между медианой и средней . Это соотношение можно использовать в отдельных случаях для определения третьего показателя по двум известным.