Модель нейронной сети с обратным распространением ошибки
История исследований в области нейронных сетей
Лекция 6 Искусственные нейронные сети
В истории исследований в области нейронных сетей, как и в истории любой другой науки, были свои успехи и неудачи. Кроме того, здесь постоянно сказывается психологический фактор, проявляющийся в неспособности человека описать словами то, как он думает.
Способность нейронной сети к обучению впервые исследована Дж. Маккалоком и У. Питтом. В 1943 году вышла их работа “Логическое исчисление идей, относящихся к нервной деятельности", в которой была построена модель нейрона, и сформулированы принципы построения искусственных нейронных сетей.
Крупный толчок развитию нейрокибернетики дал американский нейрофизиолог Френк Розенблатт, предложивший в 1962 году свою модель нейронной сети — персептрон. Воспринятый первоначально с большим энтузиазмом, он вскоре подвергся интенсивным нападкам со стороны крупных научных авторитетов. И хотя подробный анализ их аргументов показывает, что они оспаривали не совсем тот персептрон, который предлагал Розенблатт, крупные исследования по нейронным сетям были свернуты почти на 10 лет.
Несмотря на это в 70-е годы было предложено много интересных разработок, таких, например, как когнитрон, способный хорошо распознавать достаточно сложные образы независимо от поворота и изменения масштаба изображения.
В 1982 году американский биофизик Дж. Хопфилд предложил оригинальную модель нейронной сети, названную его именем. В последующие несколько лет было найдено множество эффективных алгоритмов: сеть встречного потока, двунаправленная ассоциативная память и др.
В 1986 году Дж. Хинтон и его коллеги опубликовали статью с описанием модели нейронной сети и алгоритмом ее обучения, что дало новый толчок исследованиям в области искусственных нейронных сетей.
Нейронная сеть состоит из множества одинаковых элементов — нейронов, поэтому начнем с них рассмотрение работы искусственной нейронной сети.
Биологический нейрон моделируется как устройство, имеющее несколько входов (дендриты), и один выход (аксон). Каждому входу ставится в соответствие некоторый весовой коэффициент (w), характеризующий пропускную способность канала и оценивающий степень влияния сигнала с этого входа на сигнал на выходе. В зависимости от конкретной реализации, обрабатываемые нейроном сигналы могут быть аналоговыми или цифровыми (1 или 0). В теле нейрона происходит взвешенное суммирование входных возбуждений, и далее это значение является аргументом активационной функции нейрона, один из возможных вариантов которой представлен на Рис. 1.
Рис. 1 Искусственный нейрон
Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Работа сети разделяется на обучение и адаптацию. Под обучением понимается процесс адаптации сети к предъявляемым эталонным образцам путем модификации (в соответствии с тем или иным алгоритмом) весовых коэффициентов связей между нейронами. Этот процесс является результатом алгоритма функционирования сети, а не предварительно заложенных в нее знаний человека, как это часто бывает в системах искусственного интеллекта.
Среди различных структур нейронных сетей (НС) одной из наиболее известных является многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми аксонами нейронов предыдущего слоя или, в случае первого слоя, со всеми входами НС. Такие НС называются полносвязными. Когда в сети только один слой, алгоритм ее обучения с учителем довольно очевиден, так как правильные выходные состояния нейронов единственного слоя заведомо известны, и подстройка синаптических связей идет в направлении, минимизирующем ошибку на выходе сети. В многослойных же сетях оптимальные выходные значения нейронов всех слоев, кроме последнего, как правило, не известны, и двух или более слойный перцептрон уже невозможно обучить, руководствуясь только величинами ошибок на выходах НС. Один из вариантов решения этой проблемы – разработка наборов выходных сигналов, соответствующих входным, для каждого слоя НС, что, конечно, является очень трудоемкой операцией и не всегда осуществимо. Второй вариант – динамическая подстройка весовых коэффициентов синапсов, в ходе которой выбираются, как правило, наиболее слабые связи и изменяются на малую величину в ту или иную сторону, а сохраняются только те изменения, которые повлекли уменьшение ошибки на выходе всей сети. Очевидно, что данный метод, несмотря на свою кажущуюся простоту, требует громоздких рутинных вычислений. Третий, более приемлемый вариант – распространение сигналов ошибки от выходов НС к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Этот алгоритм обучения НС получил название процедуры обратного распространения. Именно он будет рассмотрен в дальнейшем.
Согласно методу наименьших квадратов, минимизируемой целевой функцией ошибки НС является величина:
(1)
где – реальное выходное состояние нейрона j выходного слоя N нейронной сети при подаче на ее входы p-го образа; djp – идеальное (желаемое) выходное состояние этого нейрона.
Суммирование ведется по всем нейронам выходного слоя и по всем обрабатываемым сетью образам. Минимизация ведется методом градиентного спуска, что означает подстройку весовых коэффициентов следующим образом:
(2)
Здесь wij – весовой коэффициент синаптической связи, соединяющей i-ый нейрон слоя n-1 с j-ым нейроном слоя n, h – коэффициент скорости обучения, 0<h<1.
(3)
Здесь под yj, как и раньше, подразумевается выход нейрона j, а под sj – взвешенная сумма его входных сигналов, то есть аргумент активационной функции. Так как множитель dyj/dsj является производной этой функции по ее аргументу, из этого следует, что производная активационной функция должна быть определена на всей оси абсцисс. В связи с этим функция единичного скачка и прочие активационные функции с неоднородностями не подходят для рассматриваемых НС. В них применяются такие гладкие функции, как гиперболический тангенс или классический сигмоид с экспонентой. В случае гиперболического тангенса
(4)
Третий множитель ¶sj/¶wij, очевидно, равен выходу нейрона предыдущего слоя yi(n-1).
Что касается первого множителя в (3), он легко раскладывается следующим образом
(5)
Здесь суммирование по k выполняется среди нейронов слоя n+1.
Введя новую переменную
(6)
мы получим рекурсивную формулу для расчетов величин dj(n) слоя n из величин dk(n+1) более старшего слоя n+1.
(7)
Для выходного же слоя
(8)
Теперь мы можем записать (2) в раскрытом виде:
(9)
Иногда для придания процессу коррекции весов некоторой инерционности, сглаживающей резкие скачки при перемещении по поверхности целевой функции, (9) дополняется значением изменения веса на предыдущей итерации
(10)
где m – коэффициент инерционности, t – номер текущей итерации.
Таким образом, полный алгоритм обучения НС с помощью процедуры обратного распространения строится так:
1. Подать на входы сети один из возможных образов и в режиме обычного функционирования НС, когда сигналы распространяются от входов к выходам, рассчитать значения последних. Напомним, что
(11)
где M – число нейронов в слое n-1 с учетом нейрона с постоянным выходным состоянием +1, задающего смещение; yi(n-1)=xij(n) – i-ый вход нейрона j слоя n.
yj(n) = f(sj(n)), где f() – сигмоид (12)
yq(0)=Iq, (13)
где Iq – q-ая компонента вектора входного образа.
2. Рассчитать d(N) для выходного слоя по формуле (8).
Рассчитать по формуле (9) или (10) изменения весов Dw(N) слоя N.
3. Рассчитать по формулам (7) и (9) (или (7) и (10)) соответственно d(n) и Dw(n) для всех остальных слоев, n=N-1,...1.
4. Скорректировать все веса в НС
(14)
5. Если ошибка сети существенна, перейти на шаг 1. В противном случае – конец.
Рис. 2. Диаграмма сигналов в сети при обучении по алгоритму обратного распространения
Сети на шаге 1 попеременно в случайном порядке предъявляются все тренировочные образы, чтобы сеть, образно говоря, не забывала одни по мере запоминания других. Алгоритм иллюстрируется Рис. 2.
Из выражения (9) следует, что когда выходное значение yi(n-1) стремится к нулю, эффективность обучения заметно снижается. При двоичных входных векторах в среднем половина весовых коэффициентов не будет корректироваться, поэтому область возможных значений выходов нейронов [0,1] желательно сдвинуть в пределы [-0.5,+0.5], что достигается простыми модификациями логистических функций. Например, сигмоид с экспонентой преобразуется к виду
(15)
Теперь коснемся вопроса емкости НС, то есть числа образов, предъявляемых на ее входы, которые она способна научиться распознавать. Для сетей с числом слоев больше двух, он остается открытым. Как показано в [4], для НС с двумя слоями, то есть выходным и одним скрытым слоем, детерминистская емкость сети Cd оценивается так:
Nw/Ny<Cd<Nw/Ny×log(Nw/Ny) (16)
где Nw – число подстраиваемых весов, Ny – число нейронов в выходном слое.
Следует отметить, что данное выражение получено с учетом некоторых ограничений. Во-первых, число входов Nx и нейронов в скрытом слое Nh должно удовлетворять неравенству Nx+Nh>Ny. Во-вторых, Nw/Ny>1000. Однако вышеприведенная оценка выполнялась для сетей с активационными функциями нейронов в виде порога, а емкость сетей с гладкими активационными функциями, обычно больше. Кроме того, фигурирующее в названии емкости прилагательное "детерминистский" означает, что полученная оценка емкости подходит абсолютно для всех возможных входных образов, которые могут быть представлены Nx входами. В действительности распределение входных образов, как правило, обладает некоторой регулярностью, что позволяет НС проводить обобщение и, таким образом, увеличивать реальную емкость. Так как распределение образов, в общем случае, заранее не известно, мы можем говорить о такой емкости только предположительно, но обычно она раза в два превышает емкость детерминистскую.
В продолжение разговора о емкости НС логично затронуть вопрос о требуемой мощности выходного слоя сети, выполняющего окончательную классификацию образов. Дело в том, что для разделения множества входных образов, например, по двум классам достаточно всего одного выхода. При этом каждый логический уровень – "1" и "0" – будет обозначать отдельный класс. На двух выходах можно закодировать уже 4 класса и так далее. Однако результаты работы сети, организованной таким образом, можно сказать – "под завязку", – не очень надежны. Для повышения достоверности классификации желательно ввести избыточность путем выделения каждому классу одного нейрона в выходном слое или, что еще лучше, нескольких, каждый из которых обучается определять принадлежность образа к классу со своей степенью достоверности, например: высокой, средней и низкой. Такие НС позволяют проводить классификацию входных образов, объединенных в нечеткие (размытые или пересекающиеся) множества. Это свойство приближает подобные НС к условиям реальной жизни.
Рассматриваемая НС имеет несколько "узких мест". Во-первых, в процессе обучения может возникнуть ситуация, когда большие положительные или отрицательные значения весовых коэффициентов сместят рабочую точку на сигмоидах многих нейронов в область насыщения. Малые величины производной от логистической функции приведут в соответствие с (7) и (8) к остановке обучения, что парализует НС. Во-вторых, применение метода градиентного спуска не гарантирует, что будет найден глобальный, а не локальный минимум целевой функции. Эта проблема связана еще с одной, а именно – с выбором величины скорости обучения. Доказательство сходимости обучения в процессе обратного распространения основано на производных, то есть приращения весов и, следовательно, скорость обучения должны быть бесконечно малыми, однако в этом случае обучение будет происходить неприемлемо медленно. С другой стороны, слишком большие коррекции весов могут привести к постоянной неустойчивости процесса обучения. Поэтому в качестве h обычно выбирается число меньше 1, но не очень маленькое, например, 0.1, и оно, вообще говоря, может постепенно уменьшаться в процессе обучения. Кроме того, для исключения случайных попаданий в локальные минимумы иногда, после того как значения весовых коэффициентов застабилизируются, h кратковременно сильно увеличивают, чтобы начать градиентный спуск из новой точки. Если повторение этой процедуры несколько раз приведет алгоритм в одно и то же состояние НС, можно более или менее уверенно сказать, что найден глобальный максимум, а не какой-то другой.