русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определение.


Дата добавления: 2013-12-23; просмотров: 655; Нарушение авторских прав


Общая форма задачи ЛП

Графический метод решения задач ЛП

При нахождении решения задачи ЛП графическим методом могут встретиться следующие случаи:

 

Целевая функция не ограничена сверху Система ограничений задачи несовместна

на множестве допустимых решений (некорректная постановка задачи). Нет ОДР

 

Пусть заданы: множества I={1,2…m} и J={1,2…n}, причем I= I1U I2, I1 Ç I2 = Æ, J= J1UJ2, J1Ç J2 = Æ, вещественные числа аij, iÎI, jÎJ; bi , iÎI, сj , jÎJ.

 

ЗАДАЧА 1 (прямая со смешанными ограничениями)

Максимизировать линейную функцию

(1)

на множестве векторов х=( х12, …хn,), (2)

удовлетворяющих условиям:

 

1. хj ³0 для jÎJ2 (3)

2. (4)

 

Двойственная задача ЛП

ЗАДАЧА 1* (двойственная со смешанными ограничениями).

Минимизировать линейную функцию

(5)

на множестве векторов y=(y1,y2,…..ym), (6)

удовлетворяющих условиям:

1. yi0 для iÎI2 (7)

2.(8)

 

 

Векторы (2), (6), удовлетворяющие условиям (3), (4) и (7), (8) называются допустимым для задачи 1 и задачи 1* соответственно.

Допустимые векторы (2), (6), доставляющие максимум функции (1) и минимум функции (5) соответственно, называются оптимальными.

Правила составления двойственной задачи ЛП

 

В задаче 1 имеется n-переменных и m- ограничений типа (4). В задаче 1* имеется m –переменных и n-ограничений типа (8). Это значит, что каждой переменной в задаче 1 соответствует ограничение в задаче 1* и каждому ограничению в задаче 1 соответствует переменная в задаче 1*.

В задаче 1 требуется максимизировать целевую функцию на множестве заданных ограничений больше 0. В задаче 1* требуется минимизировать целевую функцию на множестве заданных ограничений меньше 0.



Коэффициенты сj линейной функции (1) в задаче 1 являются свободными членами ограничений (8) задачи 1*, свободные члены bi ограничений (4) в задаче 1 являются коэффициентами линейной функции (5) задачи 1*.

Коэффициенты при неизвестных аij в задачах 1 и 1* одни и те же, но матрицы из этих коэффициентов транспонированы по отношению друг к другу.

В задаче 1 все неравенства типа ³ , а в задаче 1* все неравенства типа £.

Если на переменную задачи 1 налагается условие неотрицательности, то соответствующее ограничение в двойственной задаче является неравенством, а если условия неотрицательности на переменную нет, то соответствующее ограничение в задаче 1* является уравнением. И наоборот.

 



<== предыдущая лекция | следующая лекция ==>
Графический метод решения задач ЛП | Пример составления двойственной задачи ЛП


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.