русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Равносильности, выражающие одни логические операции через другие.


Дата добавления: 2013-12-23; просмотров: 2211; Нарушение авторских прав


Основные равносильности.

законы идемпотентности.

- закон противоречия

- закон исключенного третьего

- закон снятия двойного отрицания

законы поглощения

1. 4. .

2. . 5. .

3. . 6. .

Здесь 3, 4, 5, 6 – законы Моргана.

Ясно, что равносильности 5 и 6 получаются из равносильностей 3 и 4, соответственно, если от обеих частей последних взять отрицания и воспользоваться законом снятия двойного отрицания.

Таким образом, в доказательстве нуждаются первые четыре равносильности. Докажем одну из них : первую .

Так как при одинаковых логических значениях x и y истинными являются формулы , то истинной будет и конъюнкция . Следовательно, в этом случае обе части равносильности имеют одинаковые истинные значения.

Пусть теперь x и y имеют различные логические значения. Тогда будут ложными эквивалентность и одна из двух импликаций или . Но при этом будет ложной и конъюнкция .

Таким образом, и в этом случае обе части равносильности имеют одинаковые логические значения.

Аналогично доказываются равносильности 2 и 4.

Из равносительностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

Дальнейшее исключение логических операций невозможно. Так, если мы будем использовать только конъюнкцию, то уже такая формула как отрицание не может быть выражена с помощью операции конъюнкции.

Однако существуют операции, с помощью которых может быть выражена любая из пяти логических операций, которыми мы пользуемся. Такой операцией является, например, операция “Штрих Шеффера”. Эта операция обозначается символом ½ и определяется следующей таблицей истинности:

x y x½y

 





<== предыдущая лекция | следующая лекция ==>
Отрицание. | Равносильные преобразования формул.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.