русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Арифметические операции в позиционных системах счисления


Дата добавления: 2013-12-23; просмотров: 5543; Нарушение авторских прав


Двоично-шестнадцатеричная таблица

2―ная
16―ная
2―ная
16―ная A B C D E F

Двоично―восьмеричная таблица

2―ная
8―ная

Например, надо перевести в восьмеричную и шестнадцатеричную системы счисления число 1011000010,00110012.
Для этого разобьем исходное число на группы по 3 цифры, начиная от десятичной запятой, и заменим триады восьмеричными цифрами:

001 011 000 010 , 001 100 100 ― 2―ичное число;
1 3 0 2 , 1 4 4 ― 8―ричное число.

Разобьем число на группы по 4 цифры, начиная от десятичной запятой, и заменим тетрады шестнадцатеричными цифрами:

0010 1100 0010 , 0011 0010 ― 2―ичное число;
2 С 2 , 3 2 ― 16―ричное число.

Результат: 1011000010,00110012=1302,1448=2C2,3216

Арифметические операции в рассматриваемых позиционных системах счисления выполняются по законам, известным из десятичной арифметики. Двоичная система счисления имеет основание 2, и для записи чисел используются всего две цифры 0 и 1 в отличие от десяти цифр десятичной системы счисления. Рассмотрим сложение одноразрядных чисел: 0+0=0, 0+1=1, 1+0=0. Эти равенства справедливы как для двоичной системы, так и для десятичной системы. Чему же равно 1+1? В десятичной системе это 2. Но в двоичной системе нет цифры 2! Известно, что при десятичном сложении 9+1 происходит перенос 1 в старший разряд, так как старше 9 цифры нет. То есть 9+1=10. В двоичной системе старшей цифрой является 1. Следовательно, в двоичной системе 1+1=10, так как при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение числа в нем становится равным или большим основания. Для двоичной системы это число равно 2 (102=210).
Продолжая добавлять единицы, заметим: 102+1=112, 112+1=1002 ― произошла "цепная реакция", когда перенос единицы в один разряд вызывает перенос в следующий разряд. Сложение многоразрядных чисел происходит по этим же правилам с учетом возможности переносов из младших разрядов в старшие. Вычитание многоразрядных двоичных чисел производится с учетом возможных заёмов из старших разрядов. Действия умножения и деления чисел в двоичной арифметике можно выполнять по общепринятым для позиционных систем правилам.
В основе правил арифметики любой позиционной системы лежат таблицы сложения и умножения одноразрядных чисел.

 



Для двоичной системы счисления:

Аналогичные таблицы составляются для любой позиционной системы счисления. Пользуясь такими таблицами, можно выполнять действия над многозначными числами.
Пример 4. Выполнить действия в пятеричной системе счисления: 3425+235; 2135.55.
Решение
Составим таблицы сложения и умножения для пятеричной системы счисления:

Выполним сложение.
Рассуждаем так: два плюс три равно 10 (по таблице); 0 пишем, 1 ― в уме. Четыре плюс два равно 11 (по таблице), да еще один, 12. 2 пишем, 1 ― в уме. Три да один равно 4 (по таблице). Результат ― 420.

Выполним умножение.
Рассуждаем так: трижды три ― 14 (по таблице); 4 пишем, один ― в уме. Трижды один дает 3, да плюс один, ― пишем 4. Дважды три (по таблице) ― 11; 1 пишем, 1 переносим влево. Окончательный результат ― 1144.
Если числа, участвующие в выражении, представлены в разных системах, нужно сначала привести их к одному основанию.

Пример 5. Сложить два числа: 178 и 1716.
Решение
Приведем число 1716 к основанию 8 посредством двоичной системы (пробелами условно обозначено деление на тетрады и триады): 1716=101112=101112=278.
Выполним сложение в восьмеричной системе:

Сделаем проверку, выполнив те же действия в десятичной системе:

Пример 6. Вычислить выражение , записав результат в двоичной системе счисления.
Решение
Приведем числа, участвующие в выражении, в единую систему счисления, например, десятичную:

Выполним указанные действия:
23―81/27=2010.
Запишем результат в двоичной системе счисления: 2010=101002.
Таким образом, арифметические действия в позиционных системах счисления выполняются по общим правилам. Необходимо только помнить, что перенос в следующий разряд при сложении и заем из старшего разряда при вычитании определяются величиной основания системы счисления.



<== предыдущая лекция | следующая лекция ==>
Перевод чисел из одной системы счисления в другую | Компьютерное кодирование чисел


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.