Ранее в холодильниках применялись курковые и секторные затворы дверей. В современных холодильниках применяются магнитные запоры.
Магнитные затворы представляют собой эластичную магнитную вставку, помещенную в уплотнительный профиль на внутренней панели двери. При закрывании двери она плотно притягивается к металлическому корпусу. Исходным сырьем для получения манигтных материалов служит феррит бария ВаО в смеси с каучуками или поливиниловыми и другими смолами, придающими ему гибкость. Изготовленные ленты эластичного магнита намагничивают в магнитном поле.
Притягивая уплотнитель к шкафу по всему периметру, магнитный затвор обеспечивает хорошее уплотнение и в то же время не требует усилий для открывания двери, которое необходимо проверять динамометром с погрешностью +1 Н. Динамометр прикрепляют к ручке на расстоянии, наиболее отдаленном от шарниров. Усилие при этом должно быть направлено перпендикулярно плоскости двери.
В холодильниках с магнитным затвором уплотнитель притягивается к шкафу силой притяжения магнита, при этом профиль уплотнителя растягивается. Уплотнитель имеет два баллона. Баллон прямоугольного сечения, в котором находится магнитная вставка, прижимается передней плоскостью к шкафу. Толщина стенки баллона существенно влияет на силу притяжения уплотнителя и не превышает 0,45 мм. Баллон "гармошка" служит для компенсации небольшого свободного хода двери. В свободном состоянии уплотнителя "гармошка" несколько сжата и при отходе двери растягивается, препятствуя отрыву уплотнителя от шкафа. Для эффективной работы профиль баллона "гармошка" имеет небольшое сопротивление растяжению, что обеспечивается тонкими стенками баллона, а также соответствующей конфигурацией его.
Магнитные вставки узлов уплотнения делают прямоугольного сечения. Их изготовляют из эластичных многокомпонентных ферритонаполненных композиций.
Уплотнение двери следует проверять, не включая холодильник в сеть. Бумажная полоска шириной 50 мм и толщиной 0,08 мм, заложенная между уплотнителем двери и закрываемой поверхностью шкафа, ни в одном месте не должна свободно перемещаться.
• Адресация в TCP/IP-сетях.
• Типы адресов стека TCP/IP.
• Структура IP-адреса.
• Классы IP-адресов.
• Использование масок.
• Протокол IPv6.
• Особые IP-адреса.
• Протокол ARP.
• Резюме.
• Контрольные вопросы.
Адресация в TCP/IP-сетях
Стек протоколов TCP/IP предназначен для соединения отдельных подсетей, построенных по разным технологиям канального и физического уровней (Ethernet, Token Ring, FDDI, ATM, X.25 и т. д.) в единую составную сеть. Каждая из технологий нижнего уровня предполагает свою схему адресации. Поэтому на межсетевом уровне требуется единый способ адресации, позволяющий уникально идентифицировать каждый узел, входящий в составную сеть. Таким способом в TCP/IP-сетях является IP-адресация. Узел составной сети, имеющий IP-адрес, называется хост (host).
Типы адресов стека TCP/IP
В стеке TCP/IP используются три типа адресов:
– локальные (другое название – аппаратные);
– IP-адреса (сетевые адреса);
– символьные доменные имена.
Локальный адрес – это адрес, присвоенный узлу в соответствии с технологией подсети, входящей в составную сеть. Если подсетью является локальная сеть Ethernet, Token Ring или FDDI, то локальный адрес – это МАС-адрес (MAC address – Media Access Control address). МАС-адреса назначаются сетевым адаптерам и портам маршрутизаторов производителями оборудования и являются уникальными, так как распределяются централизованно. МАС-адрес имеет размер 6 байт и записывается в шестнадцатеричном виде, например 00-08-А0-12-5F-72.
IP-адреса (IP address) представляют собой основной тип адресов, на основании которых сетевой уровень передает сообщения, называемые IP-пакетами. Эти адреса состоят из 4 байт, записанных в десятичном виде и разделенных точками, например 117.52.9.44. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых адаптеров. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Символьные доменные имена (domain name) служат для удобства представления IP-адресов. Человеку неудобно запоминать числовые IP-адреса, поэтому была разработана специальная служба, DNS (Domain Name System), устанавливающая соответствие между IP-адресами и символьными доменными именами, например www.rambler.ru.