русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Пуассоновский поток


Дата добавления: 2013-12-23; просмотров: 7163; Нарушение авторских прав


За эталон потока в моделировании принято брать пуассоновский поток.

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t0, t0 + τ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ(t) = const(t), то это стационарный поток Пуассона (простейший). В этом случае a = λ · t. Если λ = var(t), то это нестационарный поток Пуассона.

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ, тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

 

Рис. 28.2. График вероятности непоявления ни одного события во времени

Вероятность появления хотя бы одного события (PХБ1С) вычисляется так:

так как PХБ1С + P0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).



 

Рис. 28.3. График вероятности появления хотя бы одного события со временем

Если увеличивать λ, то при наблюдении за событием в течение одного и того же времени τ, вероятность наступления события возрастает (см. рис. 28.4). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

 

Рис. 28.4. Влияние величины интенсивности потока на вероятность появления события в течение заданного интервала времени τ

Изучая закон, можно определить, что: mx = 1/λ, σ = 1/λ, то есть для простейшего потока mx = σ. Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале mxσ < τj < mx + σ. Хотя ясно, что в среднем оно примерно равно: τj = mx = Tн/N. Событие может появиться в любой момент времени, но в пределах разброса этого момента τj относительно mx на [–σ; +σ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ. В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

 

Рис. 28.5. Иллюстрация влияния величины σ на положение события на временной шкале

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*), окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r),

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τj).

Пример 1. Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение Tн = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

 

Рис. 28.6. Алгоритм, генерирующий поток случайных событий в заданным λ

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период Tн = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями tсi и моментами времени, определяемыми как 3 · i, то в среднем величина будет равна σ = 3.

 

Рис. 28.7. Иллюстрация работы алгоритма, генерирующего поток случайных событий


<== предыдущая лекция | следующая лекция ==>
Распределение Пуассона | Моделирование неординарных потоков событий


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.