русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Накопители на гибких магнитных дисках


Дата добавления: 2013-12-23; просмотров: 3182; Нарушение авторских прав


Основные типы устройств ввода/вывода

Устройства ввода/вывода

Как правило периферийные устройства компьютеров делятся на устройства ввода, устройства вывода и внешние запоминающие устройства (осуществляющие как ввод данных в машину, так и вывод данных из компьютера). Основной обобщающей характеристикой устройств ввода/вывода может служить скорость передачи данных (максимальная скорость, с которой данные могут передаваться между устройством ввода/вывода и основной памятью или процессором). На рис. 9.3. представлены основные устройства ввода/вывода, применяемые в современных компьютерах, а также указаны примерные скорости обмена данными, обеспечиваемые этими устройствами.

Тип устройства Направление передачи данных Скорость передачи данных (Кбайт/с)
Клавиатура Мышь Голосовой ввод Сканер Голосовой вывод Строчный принтер Лазерный принтер Графический дисплей (ЦП (r) буфер кадра) Оптический диск Магнитная лента Магнитный диск Ввод Ввод Ввод Ввод Вывод Вывод Вывод Вывод Вывод ЗУ ЗУ ЗУ 0.01 0.02 0.02 200.0 0.06 1.00 100.00 30000.00 200.0 500.00 2000.00 2000.00

Рис. 9.3. Примеры устройств ввода/вывода

В рамках данного обзора мы рассмотрим наиболее быстрые из этих устройств: магнитные и магнитооптические диски, а также магнитные ленты.

 

Гибкие диски используются как долговременная сменная память компьютера. Конструктивно диски представляют собой тонкие пластинки диаметром 5.25 и 3.5 дюйма, изготовленные из лавсана, покрытые оксидом железа или сплавом кобальта (высокая плотность). Некоторые пластинки по краю внутреннего отверстия имеют кольцо жесткости, повышающее устойчивость диска к деформации при зажиме их внутри дисковода. Для защиты от пыли и касаний предметов пластинки помещают в пластмассовый чехол. В чехле диска на 5.25 имеются отверстия (рис. 4.1) для зажима механизма вращения диска (1) с кольцом жесткости (5), для контакта с магнитными головками (2), для фиксации начала дорожки (маркер) (3), для запрещения/разрешения записи (4). В диске на 3.5 чехол твердый, отверстие доступа к диску закрывает металлическая задвижка, предохраняющая пластину от повреждений.



 

 

Рис. 4.1. Гибкий диск

 

В рабочем режиме диск вращается электромотором с постоянной скоростью 300 или 360 (высокая плотность) оборотов в минуту. К отверстию в чехле (2) с двух сторон подводятся магнитные головки, которые последовательно осуществляют запись (считывание) информации на дорожки пластины. Головки могут перемещаться внутрь или к краю пластины дискретно при помощи шагового двигателя, фиксируясь на определенных номерах дорожек. Способ записи информации как на гибкий, так и на жесткий диски можно пояснить с помощью рис. 4.2. Дорожка диска двигается относительно магнитной головки (МГ) по часовой стрелке (НД). Магнитный материал (ММ) на определенном участке около зазора намагничивается полем, создаваемым катушкой записи. Величина поля определяется током записи I. Ток выбирается таким образом (I = Im), чтобы на поверхности диска под зазором оставалась остаточная намагниченность (ориентация магнитных доменов N®S), оптимальная для длительного хранения и воспроизведения. При смене направления тока с +Im на (-Im) в катушке записи изменяется ориентация доменов в магнитном материале. Очевидно, что максимальная продольная плотность записи (ВРI) определяется минимальным размером участка L, который может обрабатывать накопитель без искажений. Так 3.5² НГМД имеют BPI = 17500 (1.44 Мб), а 5.25 - BPI = 9800 (1.2 Мб). На рис. 4.2, а показан пример записываемой последовательности 01001..., где за направление +Im принята запись логической единицы, а за (-Im) – запись нуля. При считывании информации намагниченные участки диска оказываются под зазором головки и магнитные силовые линии замыкаются через сердечник катушки в определённом направлении. В момент смены направлений этих линий tсз (смена знака) в катушке считывания будет создаваться напряжение е считывания. Для повышения чувствительности головки считывания к наличию информации моменты подачи тока Im синхронизируют (меняют знак принудительно), устанавливая постоянные размеры L под каждый бит последовательности. А для получения высокой плотности записи BPI обрабатывают одновременно несколько битов входной последовательности и определенным образом ее перекодируют, размещая с учетом частоты синхронизации на тех же размерах дорожки более длинные входные последовательности закодированных нулей и единиц. Для перекодирования обычно используется метод ограничения длины "пробела" (RLL), в котором при кодировании оговаривается минимальное и максимальное количество битовых ячеек (без зон смены знака), которые можно расположить между двумя реально записанными зонами смены знака на диске.

Дальнейшему увеличению плотности способствовала технология PRML, при которой аналоговый сигнал с головки считывания преобразуется в цифровую последовательность. Последовательность затем разбивается на наборы данных, которые анализируются и корректируются с наименьшей вероятностью ошибки. Способ увеличения плотности BPI за счет уменьшения размеров единичных ячеек с горизонтальной намагниченностью (рис 4.2, а) имеет ограничения, при которых резко увеличивается вероятность их спонтанного размагничивания.

Новый способ увеличения плотности BPI, предложенный Fujitsu (рис 4.2, б), заключается в использовании дополнительного магнитного материала (ДММ) и вертикального намагничивания, он позволяет увеличить плотность записи в 8 раз.

 

 
 
б
а

 

Рис. 4.2. Схема записи/считывания информации на магнитный диск:
а – фрагмент записываемой последовательности …01001…, б – схема вер-тикального намагничивания

 

При любом способе записи нумерация дорожек начинается с края и сверху пластины от нулевой до тридцать девятой или семьдесят девятой. Ширина дорожки зависит от радиальной плотности записи ТРI и составляет 0.33 мм при 360 Кб (ТРI=48 дорожек на дюйм и 40 дорожек на одну сторону) или 0.16 мм для дисков 1.2 Мб при TPI = 96 и высокой плотности записи. НГМД 3.5" емкостью 1.44 Мб имеют TPI = 135. Каждая дорожка разбивается на секторы. Секторы нумеруются по порядку 1, 2, 3... начиная с нулевой дорожки от маркера, в сторону противоположную вращению пластины (рис. 4.1). Программа FORMAT.COM размечает диск на необходимую плотность, число секторов и дорожек. Эта же программа контролирует исправность секторов и заносит характеристики форматирования диска в FAT в начальные секторы.

Режим форматирования и записи информации на диски с разной плотностью должен определяться типом дисковода и материалом покрытия пластины. Дискеты с обычным покрытием (SD) на 360 Кб и двойной плотности (DD) на 720 Кб используют режим напряженности магнитного поля для записи/стирания информации в области головки 300 эрстед, а дискеты с высокой плотностью (HD) – 600 эрстед. Причем дисководы с высокой плотностью на 1.2 Мб и 1.44 Мб используют другой способ записи – метод туннельного стирания, при котором запись осуществляется в виде полосок, а около них пространство размагничивается. Такой способ записи уменьшает влияние смежных дорожек друг на друга и позволяет увеличить поперечную плотность записи. Разный режим работы дисководов на 300 и 600 эрстед может способствовать ошибкам при форматировании, записи, хранении и чтении дискет. Основные характеристики накопителей на гибких дисках представлены в табл. 4.1. Все диски имеют 2 рабочие стороны, размер сектора 512 байт, 80 дорожек шириной 0.115, толщину магнитного слоя 1-2.5 мкм. Время доступа к данным в гибких дисководах зависит от способа вращения, записи и кодирования информации.

Таблица 4.1

 

Параметры НГМД  
Диаметр диска, дюйм 5.25 3.5
Секторов: на дорожке/всего 15/2400 36/5760 18/2880
Дорожек на поверхности
Емкость, Мб 1.2 2.88 1.44
Число головок
Среднее время доступа, мс 80-100
Число байт в секторе

 

Накопители на гибких дисках постоянно совершенствуются. Из-за большей надежности и компактности дискеты на 3.5 вытеснили дискеты 5.25.Был разработан новый стандарт для дискет размером 3.5 емкостью 2.88 Мб. Эти гибкие дискеты с повышенной точностью позиционирования головок емкостью 2.88 Мб называют ED-дискетами (Extra High Density). BIOS должен поддерживать обмен с этим НГМД. Запоминающая пластина в ED диске изготавливается из магнитного слоя феррита бария с ДММ. Это позволяет использовать метод вертикальной записи, при кото­ром магнитные домены оказываются ориентированными в вертикальной, а не в горизонтальной плоскости, чем достигается более высокая продольная плотность записи BPI.

 

Сменные накопители на магнитных дисках

 

Потребность перемещения больших объемов информации с одного ПК на другой и архивации данных привела к созданию мобильных внешних устройств хранения информации большого объёма. Благодаря развитию технологий и увеличению объемов информации на смену флоппи-диску пришли магнитные диски на сменных накопителях. На данный момент существуют несколько стандартов сменных накопителей на магнитных дисках.

Первым сменным накопителем класса емкости до 1 Гб стал 3.5" диск Zip емкостью 94 Мб (затем 250 Мб) американской компании Iomega, выпущенный в 1995 г. Он вращался со скоростью 3 000 об/мин и имел время доступа около 30 мс.

Принцип записи на магнитных дисках сменных накопителей отличается от флоппи-диска:

- увеличенной плотностью записи на диск;

- применением магниторезестивного эффекта;

- позиционированием головок считывания.

У сменного накопителя переносным является не только носитель инфор­мации, но и весь дисковод, который подключается к слоту в корпусе ПК. Одной из разновидностей сменных накопителей является LS-120 (LS – laser servo) фирмы Imation, использующий гибкие магнитные диски с емкостью дискет 120 Мб. В дисководе реализована так называемая флоптическая технология, которая осуществляет позиционирование головки чтения/записи на служебную дорожку с помощью лазера, а операции чтения и записи выполняются обычным магнитным способом. Эта технология позволила повысить плотность записи и получить большую емкость гибкой дискеты. В связи с этим появились такие накопители как SyQueat, Zip, Jaz, MO, ORB и др. Мобильный дисковод LS-120, помимо своих дискет емкостью 120 Мб, позволяет читать стандартные дискеты емкостью 1.44 Мб. Пре­имуществом дисковода LS-120 является высокая емкость дискеты (120 Мб) при достаточно низкой цене и высокая скорость чтения/записи (200 – 300 Кб/с) – в несколько раз выше, чем гибкого диска (0.06 Мб/с).

Дисковод высокой плотности HiFD, разработанный фирмами Sony и Fujitsu, – съемный накопитель, подключаемый к параллельному порту, рассчитанный на использование дисков размером 200 Мб. HiFD также поддерживает формат дискет 1.44 Мб и обеспечивает скорость чтения до 3.6 Мб/с.

Основные стандарты сменных накопителей на магнитных дисках емкостью свыше 1 Гб изготавливаются фирмами Iomega (накопитель Jazz 2 Гб) и Castlewood (накопитель Orb 2.2 Гб). В конструкции Jazz в качестве носи­теля используется жесткая дисковая пластина, а в Zip – гибкий диск. Емкость картриджа Zip составляет 100 Мб, Zip 250 Mb – 250 Мб, картриджей Jazz – 540 и 1070 Мб, а картриджа Jazz 2 Gb – 2 Гб.

Накопитель на сменных дисках Orb имеет сменный жесткий диск раз­мером 3.5, заключенный в картридж (магниторезистивные головки MR из особого магнитного материала). Он комплектуется сменными дисками емкостью 2.2 Гб.

Скорость вращения диска ровна 5 400 об/мин. Максимальная скорость передачи данных может достигать 12.2 Мб/с (2 Мб/с у накопителя с интерфейсом LPT).

Характеристики переносных магнитных накопителей приведены в табл. 4.2. Из таблицы видно, что время доступа к данным в них составляет менее 84 мс, они обладают значительной емкостью и позволяют архивировать данные или переносить их из одних ЭВМ в другие.

Таблица 4.2 Характеристики накопителей
Модель, фирма Ем-кость, Мб Пиковая скорость чтения, Мб/с Время доступа, мс Совмес-тимость с FDD Интерфейс
Floppy, Sony 1.44 0.062 + FDD
Zip, Iomega - USB/IDE/SCSI/LTP
Zip, Iomega >3 <29 - IDE/SCSI/ LTP
LS-120, Imation >0,6 65-70 + IDE/SCSI/ LTP
HiFD, Sony, Fujitsu 3,6 <25 + FDD+IDE
Jazz, Iomega 15.5-17.5 - SCSI/LTP
Orb, Castlewood + USB/IDE/ SCSI
MCD3130SS Fujitsu - SCSI
Т6-5200 Maxoptix - SCSI

1.2. Накопители на магнитооптических дисках

Магнитооптические (МО) накопители являются одними из самых старейших представителей устройств со сменным носителем информации. Современные МО сочетают в себе большую емкость, высокую долговечность и надежность, возможность переносить данные, а также делать копии программ и операционных систем. Производителем и фактически монополистом на рынке МО накопителей является фирма Fujitsu.

Существуют 2 вида МО накопителей: 5.25 и 3.5 дюйма. МО диски 5.25 с двухсторонней записью изготавливаются емкостью 650 Мб, 1.3 Гб, 2.6 Гб и 4.6 Гб. МО диски односторонние 3.5 изготавливаются емкостью 128 Мб, 230 Мб, 540 Мб, 640 Мб и 1.3 Гб. Эти МО позволяют делать резервные копии не только с ПК, но и с небольших серверов. Наибольшее распространение получили современные МО накопители 3.5" емкостью 640 Мб и 1.3 Гб.

MO накопитель объединяет в себе магнитные и лазерные технологии. Во время процесса записи интенсивный лазерный луч фокусируется на диске, покрытом особым кристаллическим сплавом, который может сохранять магнитное поле. После нагревания сплава до критической температуры 145ОС (точка Кюри) [14] кристаллы сплава становятся свободными и перемещаются под воздействием пишущей головки, которая изменяет намагниченность кристаллов сплава. Величина вертикальной намагниченности участка около 0.5 кв. микрона (участок намагничен – логическая "1") позволяет изменять направление поляризации (эффект Керра) или не изменять характеристики чтения отраженного маломощного лазерного луча (участок размагничен – логическая "0"). В процессе чтения/записи головки не соприкасаются с поверхностью носителя, что способствует надежности МО. К недостаткам МО накопителей следует отнести низкую скорость записи данных (из-за медленной скорости нагрева участков для записи), а также несовместимость с флоппи-дисководом.

Характеристики МО накопителей MCD3130SS Fujitsu3.5" и Т6-5200 Maxoptix 5.25" представлены в табл. 4.2.

 



<== предыдущая лекция | следующая лекция ==>
Стандарты шин | Накопители на жестких магнитных дисках


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.