русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Виртуальные машины как современный подход к реализации множественных прикладных сред


Дата добавления: 2013-12-23; просмотров: 895; Нарушение авторских прав


Понятие "монитор виртуальных машин" (МВМ) возникло в конце 60-х годов как программный уровень абстракции, разделявший аппаратную платформу на несколько виртуальных машин. Каждая из этих виртуальных машин (ВМ) была настолько похожа на базовую физическую машину, что существующее программное обеспечение могло выполняться на ней в неизменном виде. В то время вычислительные задачи общего характера решались на дорогих мэйнфреймах (типа IBM/360), и пользователи высоко оценили способность МВМ распределять дефицитные ресурсы среди нескольких приложений.

В 80-90-е годы существенно снизилась стоимость компьютерного оборудования и появились эффективные многозадачные ОС, что уменьшило ценность МВМ в глазах пользователей. Мэйнфреймы уступили место мини-компьютерам, а затем ПК, и нужда в МВМ отпала. В результате из компьютерной архитектуры попросту исчезли аппаратные средства для их эффективной реализации. К концу 80-х в науке и на производстве МВМ воспринимались не иначе как исторический курьез [10].

Сегодня МВМ – снова в центре внимания. Корпорации Intel, AMD, Sun Microsystems и IBM создают стратегии виртуализации, в научных лабораториях и университетах для решения проблем мобильности, обеспечения безопасности и управляемости развиваются подходы, основанные на виртуальных машинах. Что же произошло между отставкой МВМ и их возрождением?

В 90-е годы исследователи из Стэндфордского университета начали изучать возможность применения ВМ для преодоления ограничений оборудования и операционных систем. Проблемы возникли у компьютеров с массовой параллельной обработкой (Massively Parallel Processing, MPP), которые плохо поддавались программированию и не могли выполнять имеющиеся ОС. Исследователи обнаружили, что с помощью виртуальных машин можно сделать эту неудобную архитектуру достаточно похожей на существующие платформы, чтобы использовать преимущества готовых ОС. Из этого проекта вышли люди и идеи, ставшие золотым фондом компании VMware (www.vmware.com), первого поставщика МВМ для компьютеров массового применения.



Как ни странно, развитие современных ОС и снижение стоимости оборудования привели к появлению проблем, которые исследователи надеялись решить с помощью МВМ. Дешевизна оборудования способствовала быстрому распространению компьютеров, но они часто бывали недогруженными, требовали дополнительных площадей и усилий по обслуживанию. А следствиями роста функциональных возможностей ОС стали их неустойчивость и уязвимость.

Чтобы уменьшить влияние системных аварий и защититься от взломов, системные администраторы вновь обратились к однозадачной вычислительной модели (с одним приложением на одной машине). Это привело к дополнительным расходам, вызванным повышенными требованиями к оборудованию. Перенос приложений с разных физических машин на ВМ и консолидация этих ВМ на немногих физических платформах позволили повысить эффективность использования оборудования, снизить затраты на управление и производственные площади. Таким образом, способность МВМ к мультиплексированию аппаратных средств – на этот раз во имя консолидации серверов и организации коммунальных вычислений – снова возродила их к жизни.

В настоящее время МВМ стал не столько средством организации многозадачности, каким он был когда-то задуман, сколько решением проблем обеспечения безопасности, мобильности и надежности. Во многих отношениях МВМ дает создателям операционных систем возможность развития функциональности, невозможной в нынешних сложных ОС. Такие функции, как миграция и защита, намного удобнее реализовать на уровне МВМ, поддерживающих обратную совместимость при развертывании инновационных решений в области операционных систем при сохранении предыдущих достижений.

Виртуализация – развивающаяся технология. В общих словах, виртуализация позволяет отделить ПО от нижележащей аппаратной инфраструктуры. Фактически она разрывает связь между определенным набором программ и конкретным компьютером. Монитор виртуальных машин отделяет программное обеспечение от оборудования и формирует промежуточный уровень между ПО, выполняемым виртуальными машинами, и аппаратными средствами. Этот уровень позволяет МВМ полностью контролировать использование аппаратных ресурсовгостевыми операционными системами (GuestOS), которые выполняются на ВМ.

МВМ создает унифицированное представление базовых аппаратных средств, благодаря чему физические машины различных поставщиков с разными подсистемами ввода-вывода выглядят одинаково и ВМ выполняются на любом доступном оборудовании. Не заботясь об отдельных машинах с их тесными взаимосвязями между аппаратными средствами и программным обеспечением, администраторы могут рассматривать оборудование просто как пул ресурсов для оказания любых услуг по требованию.

Благодаря полной инкапсуляции состояния ПО на ВМ монитор МВМ может отобразить ВМ на любые доступные аппаратные ресурсы и даже перенести с одной физической машины на другую. Задача балансировки нагрузки в группе машин становится тривиальной, и появляются надежные способы борьбы с отказами оборудования и наращивания системы. Если нужно отключить отказавший компьютер или ввести в строй новый, МВМ способен соответствующим образом перераспределить виртуальные машины. Виртуальную машину легко тиражировать, что позволяет администраторам по мере необходимости оперативно предоставлять новые услуги.

Инкапсуляция также означает, что администратор может в любой момент приостановить или возобновить работу ВМ, а также сохранить текущее состояние виртуальной машины либо вернуть ее к предыдущему состоянию. Располагая возможностью универсальной отмены, удается легко справиться с авариями и ошибками конфигурации. Инкапсуляция является основой обобщенной модели мобильности, поскольку приостановленную ВМ можно копировать по сети, сохранять и транспортировать на сменных носителях.

МВМ играет роль посредника во всех взаимодействиях между ВМ и базовым оборудованием, поддерживая выполнение множества виртуальных машин на единой аппаратной платформе и обеспечивая их надежную изоляцию. МВМ позволяет собрать группу ВМ с низкими потребностями в ресурсах на отдельном компьютере, снизив затраты на аппаратные средства и потребность в производственных площадях.

Полная изоляция также важна для надежности и обеспечения безопасности. Приложения, которые раньше выполнялись на одной машине, теперь можно распределить по разным ВМ. Если одно из них в результате ошибки вызовет аварию ОС, другие приложения будут от нее изолированы и продолжат работу. Если же одному из приложений угрожает внешнее нападение, атака будет локализована в пределах "скомпрометированной" ВМ. Таким образом, МВМ – это инструмент реструктуризации системы для повышения ее устойчивости и безопасности, не требующий дополнительных площадей и усилий по администрированию, которые необходимы при выполнении приложений на отдельных физических машинах.

МВМ должен связать аппаратный интерфейс с ВМ, сохранив полный контроль над базовой машиной и процедурами взаимодействия с ее аппаратными средствами. Для достижения этой цели существуют разные методы, основанные на определенных технических компромиссах. При поиске таких компромиссов принимаются во внимание основные требования к МВМ: совместимость, производительность и простота. Совместимость важна потому, что главное достоинство МВМ – способность выполнять унаследованные приложения. Производительность определяет величину накладных расходов на виртуализацию – программы на ВМ должны выполняться с той же скоростью, что и на реальной машине. Простота необходима, поскольку отказ МВМ приведет к отказу всех ВМ, выполняющихся на компьютере. В частности, для надежной изоляции требуется, чтобы МВМ был свободен от ошибок, которые злоумышленники могут использовать для разрушения системы.

Вместо того чтобы заниматься сложной переработкой кода гостевой операционной системы, можно внести некоторые изменения в основную операционную систему, изменив некоторые наиболее "мешающие" части ядра. Подобный подход называется паравиртуализацией [10]. Ясно, что в этом случае адаптировать ядро ОС может только автор, и, например, Microsoft не проявляет желания адаптировать популярное ядро Windows 2000 к реалиям конкретных виртуальных машин.

При паравиртуализации разработчик МВМ переопределяет интерфейс виртуальной машины, заменяя непригодное для виртуализации подмножество исходной системы команд более удобными и эффективными эквивалентами. Заметим, что хотя ОС нужно портировать для выполнения на таких ВМ, большинство обычных приложений могут выполняться в неизменном виде.

Самый большой недостаток паравиртуализации – несовместимость. Любая операционная система, предназначенная для выполнения под управлением паравиртуализованного монитора МВМ, должна быть портирована в эту архитектуру, для чего нужно договариваться о сотрудничестве с поставщиками ОС. Кроме того, нельзя использовать унаследованные операционные системы, а существующие машины не удается легко заменить виртуальными.

Чтобы добиться высокой производительности и совместимости при виртуализации архитектуры x86, компания VMware разработала новый метод виртуализации, который объединяет традиционное прямое выполнение с быстрой трансляцией двоичного кода "на лету". В большинстве современных ОС режимы работы процессора при выполнении обычных прикладных программ легко поддаются виртуализации, а следовательно, их можно виртуализировать посредством прямого выполнения. Непригодные для виртуализации привилегированные режимы может выполнять транслятор двоичного кода, исправляя "неудобные" команды x86. В результате получается высокопроизводительная виртуальная машина, которая полностью соответствует оборудованию и поддерживает полную совместимость ПО.

Преобразованный код очень похож на результаты паравиртуализации. Обычные команды выполняются в неизменном виде, а команды, нуждающиеся в специальной обработке (такие как POPF и команды чтения регистров сегмента кода), транслятор заменяет последовательностями команд, которые подобны требующимся для выполнения на паравиртуализованной виртуальной машине. Однако есть важное различие: вместо того, чтобы изменять исходный код операционной системы или приложений, транслятор двоичного кода изменяет код при его выполнении в первый раз.

Хотя трансляция двоичного кода требует некоторых дополнительных расходов, при нормальных рабочих нагрузках они незначительны. Транслятор обрабатывает лишь часть кода, и скорость выполнения программ становится сопоставимой со скоростью прямого выполнения – как только заполнится кэш-память трассировки.

Трансляция двоичного кода также помогает оптимизировать прямое выполнение. Например, если при прямом выполнении привилегированного кода часто происходит перехват команд, это может привести к существенным дополнительным расходам, поскольку при каждом перехвате управление передается от виртуальной машины к монитору и обратно. Трансляция кода может устранить многие из таких перехватов, что приведет к снижению накладных расходов на виртуализацию. Это особенно верно для центральных процессоров с длинными конвейерами команд, в частности, для современного семейства x86, в котором перехват связан с высокими дополнительными расходами.



<== предыдущая лекция | следующая лекция ==>
Лекция 4 Совместимость и множественные прикладные среды | Эффекты виртуализации


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.002 сек.