русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Перцептроны


Дата добавления: 2013-12-23; просмотров: 879; Нарушение авторских прав


Пока о проблеме обучения распознаванию образов удавалось говорить в общих чертах, не выделяя конкретные методы или алгоритмы, не возникало и трудностей, появляющихся всяких раз, когда приходится в огромном множестве конкретных примеров, характеризующиеся общими подходами к решению проблемы ОРО. Коварство самой проблемы состоит в том, что на первый взгляд все методы и алгоритмы кажутся совершенно различными и, что самое неприятное, часто никакой из них не годится для решения той задачи, которую крайне необходимо срочно решить. И тогда появляется желание выдумать новый алгоритм, который, может быть, достигнет цели. Очевидно, именно это привело к возникновению огромного множества алгоритмов, в котором не так-то легко разобраться.

Одним из методов решения задач обучения распознаванию образов основан на моделировании гипотетического механизма человеческого мозга. Структура модели заранее постулируется. При таком подходе уровень биологических знаний или гипотез о биологических механизмах является исходной предпосылкой, на которой базируются модели этих механизмов. Примером такого направления в теории и практике проблемы ОРО является класс устройств, называемых перцептронами. Нужно отметить, что перцептроны на заре своего возникновения рассматривались только как эвристические модели механизма мозга. Впоследствии они стали основополагающей схемой в построении кусочно-линейных моделей, обучающихся распознаванию образов.

Рис. 3

В наиболее простом виде перцептрон (Рис. 3) состоит из совокупности чувствительных (сенсорных) элементов (S-элементов), на которые поступают входные сигналы. S-элементы случайным образом связаны с совокупностью ассоциативных элементов (А-элементов), выход которых отличается от нуля только тогда, когда возбуждено достаточно большое число S-элементов, воздействующих на один А-элемент. А-элементы соединены с реагирующими элементами (R-элементами) связями, коэффициенты усиления (v) которых переменны и изменяются в процессе обучения. Взвешенные комбинации выходов R-элементов составляют реакцию системы, которая указывает на принадлежность распознаваемого объекта определенному образу. Если распознаются только два образа, то в перцептроне устанавливается только один R-элемент, который обладает двумя реакциями — положительной и отрицательной. Если образов больше двух, то для каждого образа устанавливают свой R-элемент, а выход каждого такого элемента представляет линейную комбинацию выходов A-элементов:



, (ф. 1)

где Rj — реакция j-го R-элемента; xi — реакция i-го A-элемента; vij — вес связи от i-го A-элемента к j-му R элементу; Qj — порог j-го R-элемента.

Аналогично записывается уравнение i-го A-элемента:

, (ф. 2)

Здесь сигнал yk может быть непрерывным, но чаще всего он принимает только два значения: 0 или 1. Сигналы от S-элементов подаются на входы А-элементов с постоянными весами равными единице, но каждый А-элемент связан только с группой случайно выбранных S-элементов. Предположим, что требуется обучить перцептрон различать два образа V1 и V2. Будем считать, что в перцептроне существует два R-элемента, один из которых предназначен образу V1, а другой — образу V2. Перцептрон будет обучен правильно, если выход R1 превышает R2, когда распознаваемый объект принадлежит образу V1, и наоборот. Разделение объектов на два образа можно провести и с помощью только одного R-элемента. Тогда объекту образа V1 должна соответствовать положительная реакция R-элемента, а объектам образа V2 — отрицательная.

Перцептрон обучается путем предъявления обучающей последовательности изображений объектов, принадлежащих образам V1 и V2. В процессе обучения изменяются веса vi А-элементов. В частности, если применяется система подкрепления с коррекцией ошибок, прежде всего учитывается правильность решения, принимаемого перцептроном. Если решение правильно, то веса связей всех сработавших А-элементов, ведущих к R-элементу, выдавшему правильное решение, увеличиваются, а веса несработавших А-элементов остаются неизменными. Можно оставлять неизменными веса сработавших А-элементов, но уменьшать веса несработавших. В некоторых случаях веса сработавших связей увеличивают, а несработавших — уменьшают. После процесса обучения перцептрон сам, без учителя, начинает классифицировать новые объекты.

Если перцептрон действует по описанной схеме и в нем допускаются лишь связи, идущие от бинарных S-элементов к A-элементам и от A-элементов к единственному R-элементу, то такой перцептрон принято называть элементарным a-перцептроном. Обычно классификация C(W) задается учителем. Перцептрон должен выработать в процессе обучения классификацию, задуманную учителем.

О перцептронах было сформулировано и доказано несколько основополагающих теорем, две из которых, определяющие основные свойства перцептрона, приведены ниже.

Теорема 1. Класс элементарных a-перцептронов, для которых существует решение для любой задуманной классификации, не является пустым.

Эта теорема утверждает, что для любой классификации обучающей последовательности можно подобрать такой набор (из бесконечного набора) А-элементов, в котором будет осуществлено задуманное разделение обучающей последовательности при помощи линейного решающего правила ).

Теорема 2. Если для некоторой классификации C(W) решение существует, то в процессе обучения a-перцептрона с коррекцией ошибок, начинающегося с произвольного исходного состояния, это решение будет достигнуто в течение конечного промежутка времени.

Смысл этой теоремы состоит в том, что если относительно задуманной классификации можно найти набор А-элементов, в котором существует решение, то в рамках этого набора оно будет достигнуто в конечный промежуток времени.

Обычно обсуждают свойства бесконечного перцептрона, т. е. перцептрона с бесконечным числом А-элементов со всевозможными связями с S-элементами (полный набор A-элементов). В таких перцептронах решение всегда существует, а раз оно существует, то оно и достижимо в a-перцептронах с коррекцией ошибок.

Очень интересную область исследований представляют собой многослойные перцептроны и перцептроны с перекрестными связями, но теория этих систем практически еще не разработана.



<== предыдущая лекция | следующая лекция ==>
Обучение и самообучение. Адаптация и обучение | История исследований в области нейронных сетей


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.