русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция №10. Общая характеристика и сущность метода статистического моделирования


Дата добавления: 2013-12-23; просмотров: 2995; Нарушение авторских прав


ЧАСТЬ 6. Статистическое моделирование систем

На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Карло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы S с учетом воздействий внешней среды Е статистические данные обрабатываются и классифицируются с использованием методов математической статистики.

Сущность метода статистического моделирования. Таким образом, сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы S некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных

входных воздействий и воздействий внешней среды Е, и реализации этого алгоритма с использованием программно-технических средств ЭВМ.

Различают две области применения метода статистического моделирования:

1) для изучения стохастических систем;

2) для решения детерминированных задач.

Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погрешность уменьшается с увеличением числа испытаний (реализаций моделирующего алгоритма) N.



В результате статистического моделирования системы S получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализаций N достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы S.

Пример детерминированной задачи – задача вычисления одномерного или многомерного интеграла методом статистических испытаний.

Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей. Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволяющим не только прогнозировать их поведение, но и количественно оценить некоторые средние их характеристики, проявляющие определенную устойчивость. Характерные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий. Выражением этих закономерностей и устойчивости средних показателей являются так называемые предельные теоремы теории вероятностей, часть из которых приводится ниже в пригодной для практического использования при статистическом моделировании формулировке. Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний (реализаций) N. Практически приемлемые при статистическом моделировании количественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ) N.

1. Неравенство Чебышева.

Для неотрицательной функции случайной величины и любого К> 0 выполняется неравенство

В частности, если и (где – среднее арифметическое; — среднеквадратическое отклонение), то

.

2. Теорема Бернулли. Если проводится N независимых испытаний, в каждом из которых некоторое событие А осуществляется с вероятностью р, то относительная частота появления события m/N при сходится по вероятности к р, т. е. при любом

,

где m — число положительных исходов испытания.

3. Теорема Пуассона. Если проводится N независимых испытаний и вероятность осуществления события А в i-м испытании равна , то относительная частота появления события m/N при сходится по вероятности к среднему из вероятностей , т. е. при любом

.

4. Теорема Чебышева. Если в N независимых испытаниях наблюдаются значения ,…,случайной величины , то при среднее арифметическое значений случайной величины сходится по вероятности к ее математическому ожиданию а, т. е. при любом

.

5. Обобщенная теорема Чебышева.Если ,…,— независимые случайные величины с математическими ожиданиями ,…,и дисперсиями ,…,, ограниченными сверху одним и тем же числом, то при среднее арифметическое значений случайной величины сходится по вероятности к среднему арифметическому их

математических ожидании:

(*)

6. Теорема Маркова. Выражение (*) справедливо и для зависимых случайных величин ,…,, если только

.

Совокупность теорем, устанавливающих устойчивость средних показателей, принято называть законом больших чисел.

7. Центральная предельная теорема. Если ,…,— независимые одинаково распределенные случайные величины, имеющие математическое ожидание а и дисперсию , то при закон распределения суммы неограниченно приближается к нормальному:

.

Здесь интеграл вероятностей

.

8.Теорема Лапласа. Если в каждом из N независимых испытаний событие А появляется с вероятностью р, то

где m — число появлений события А в N испытаниях. Теорема Лапласа является частным случаем центральной предельной теоремы.

 



<== предыдущая лекция | следующая лекция ==>
Моделирование процесса функционирования систем на базе Q-схем. | Лекция 11. Псевдослучайные последовательности. Датчики случайных чисел.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.