русс | укр

Мови програмуванняВідео уроки php mysqlПаскальСіАсемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование


Linux Unix Алгоритмічні мови Архітектура мікроконтролерів Введення в розробку розподілених інформаційних систем Дискретна математика Інформаційне обслуговування користувачів Інформація та моделювання в управлінні виробництвом Комп'ютерна графіка Лекції


Вимушені електричні коливання. Резонанс


Дата додавання: 2014-06-06; переглядів: 2345.


Для того, щоб викликати вимушені коливання потрібно здійснювати на систему зовнішню періодично змінну дію. У випадку електричних коливань це можна здійснити, якщо увімкнути послідовно з елементами контуру змінну ЕРС або, розірвавши контур, подати на контакти, що утворилися змінну напругу (рис.7.5)

 

(7.3.1)

Рис.7.5

Цю напругу потрібно додати до ЕРС самоіндукції. В результаті формула (7.2.1) набуде вигляду

. (7.3.2)

Виконавши перетворення, отримаємо рівняння

. (7.3.3)

Рівняння (7.3.3) співпадає з рівнянням вимушених механічних коливань. Частинний розв’язок цього рівняння має вигляд

, (7.3.4)

де , .

Підставимо значення і , тоді

, (7.3.5)

. (7.3.6)

Продиференціювавши рівняння (7.3.4) по часу, знайдемо силу струму а контурі при встановлених коливаннях:

.

Запишемо цей вираз у вигляді

, (7.3.7)

де – зсув по фазі між струмом і прикладеною напругою. Відповідно до (7.3.6)

. (7.3.8)

З цієї формули слідує, що струм відстає по фазі від напруги в тому випадку, коли і випереджає струм по фазі за умови, що . Згідно (7.3.5)

. (7.3.9)

Представимо співвідношення (7.3.2) у вигляді

. (7.3.10)

Добуток IR дорівнює напрузі UR на активному опорі, q/C є напругою на конденсаторі UC, вираз L(dI/dt) визначає напругу на індуктивності UL. З урахуванням цього можна записати

(7.3.11)

Таким чином, сума напруг на окремих елементах контуру дорівнює в кожний момент часу напрузі, прикладеній ззовні (рис.7.5).

Відповідно до (7.3.7)

(7.3.12)

Розділивши вираз (7.3.4) на ємність отримаємо напругу на конденсаторі

. (7.3.13)

. (7.3.14)

Помноживши похідну функції (7.3.7) на L, отримаємо напругу на індуктивності:

. (7.3.15)

. (7.3.16)

З наведених формул видно, що напруга на ємності відстає по фазі від сили струму на π/2, а напруга на індуктивності випереджає струм на π/2. Напруга на активному опорі змінюється у фазі зі струмом. Фазові співвідношення можна представити у вигляді векторної діаграми (рис. 7.6).

Резонансна частота для заряду q і напругу на конденсаторі UC дорівнює

. (7.3.17)

Резонансні криві для UC зображені на рис.7.7 (резонансні криві для q мають такий же вигляд). При резонансні криві сходяться в одній точці з ординатою UCm=Um – напрузі, що виникає на конденсаторі при підключенні його до джерела постійного струму Um. Максимум при резонансі виходить тим вищий і гостріший, чим менше β=R/2L, тобто чим менший активний опір і більша індуктивність контуру.

Резонансні криві для сили струму показані на рис. 7.8. Вони відповідають резонансним кривим для швидкості при механічних коливаннях. Амплітуда сили струму має максимальне значення при (з формули 6.3.9). Відповідно резонансна частота для сили струму співпадає з власною частотою контуру ω0:

. (7.3.18)

 

Рис. 7.6

Відрізок, що відтинається резонансними кривими на осі Іm, дорівнює нулю – при постійній напрузі встановлений струм в колі з конденсатором протікати не може.

У випадку малого затухання (при β2 <<ω02 ) резонансну частоту для напруги можна вважати рівною нулю. Відповідно можна вважати, що . Згідно формули (7.3.14) відношення амплітуди напруги на конденсаторі при резонансі до амплітуди зовнішньої напруги буде в цьому випадку дорівнювати

(7.3.19)

Тут Q – добротність контуру. Таким чином, добротність контуру показує, у скільки разів напруга на конденсаторі може перевищити прикладену до контуру напругу.

Добротність контуру визначає також гостроту резонансних кривих. Можна показати, що відношення широти резонансної кривої, взятої на висоті 0,7 до резонансної частоти дорівнює величині, оберненій до добротності контура:

. (7.3.20)

Формули (7.3.19) і (7.3.20) справедливі лише при великих значеннях Q, тобто у випадку, коли затухання вільних коливань в контурі мале.

Рис.7.7 Рис.7.8 Рис.7.9

Лекція 19


<== попередня лекція | наступна лекція ==>
Вільні затухаючі коливання | Розділ 5. Система рівнянь Максвела


Онлайн система числення Калькулятор онлайн звичайний Науковий калькулятор онлайн