русс | укр

Мови програмуванняВідео уроки php mysqlПаскальСіАсемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование


Linux Unix Алгоритмічні мови Архітектура мікроконтролерів Введення в розробку розподілених інформаційних систем Дискретна математика Інформаційне обслуговування користувачів Інформація та моделювання в управлінні виробництвом Комп'ютерна графіка Лекції


Опис векторного поля


Дата додавання: 2014-06-06; переглядів: 975.


2.1. Потік вектора напруженості

Нехай рух рідини характеризується полем вектора швидкості. Об’єм рідини, який протікає за одиницю часу через деякий переріз S, називається потоком рідини через цю поверхню. Щоб знайти потік потрібно розбити поверхню на елементарні ділянки ∆S.

Розглянемо поле вектора напруженості. Будемо вважати, що густота ліній напруженості буде дорівнювати по модулю самому вектору напруженості і тоді число ліній, які будуть пронизувати елементарну площину dS буде знаходитися, як добуток EdScosα (нормаль n до поверхні буде складати кут α з вектором Е). Це і є потік вектора Е через площину dS.

Рис.2.1

, (2.1)

Еn – проекція Е на нормаль n, dS – вектор, модуль якого чисельно дорівнює dS, а напрям співпадає з напрямом нормалі до площини. Нормаль може бути направлена в обидва боки.

Якщо є поверхня довільної форми, то потік визначається інтегруванням

. (2.2)

Рис. 2.2

 

Потік вектора Е – алгебраїчна величина, залежить від вибору напряму нормалі n і конфігурації поля вектора напруженості.

2.2. Теорема Гауса

Запишемо теорему Гауса, яка в деяких випадках спрощує знаходження напруженості електричного поля: потік вектора напруженості через замкнену поверхню дорівнює алгебраїчній сумі зарядів, які містяться всередині цієї поверхні, поділеній на ε0:

. (2.3)

Доведення:

Розглянемо поле одного заряду Q. Нехай, даний заряд знаходиться в деякій замкненій поверхні S (рис.2.3).

Розглянемо потік вектора напруженості через деякий елемент dS.

(dω =4π).

Величина , dω – кут, який опирається на дану поверхню з вершиною в точці, де знаходиться заряд Q.

Рис.2.3

Інтегрування по площі S тотожне інтегруванню по всьому куту ω. Проінтегрувавши, отримаємо:

.

Коли електричне поле створене системою зарядів Q1, Q2, Q3,... за принципом суперпозиції полів маємо:

Тоді потік вектора напруженості:

Якщо заряд знаходиться в замкненій поверхні, то він чисельно дорівнює і він дорівнює нулю, якщо знаходиться ззовні поверхні.

Нехай заряд рівномірно розподілено по об’єму V. Кожен елементарний об’єм dV утримує точковий заряд, що дорівнює ρdV і тоді в правій частині формули (3) матимемо:

. (2.4)

Інтегрування (2.4) ведемо лише по об’єму, який знаходиться всередині замкненої поверхні.

В той час, коли саме поле вектора напруженості залежить від конфігурації всіх зарядів, потік Е крізь деяку замкнену поверхню S визначається лише алгебраїчною сумою зарядів всередині S, а це означає, що якщо перемістити заряди, то поле напруженістю Е зміниться усюди і зміниться потік вектора Е через дану площу S. Але, якщо переміщення заряду відбулося без перетину поверхні S, то потік через дану поверхню залишиться незмінним, хоча саме поле напруженості може змінитися і досить суттєво.


<== попередня лекція | наступна лекція ==>
Електричний диполь в однорідному зовнішньому електричному полі | Дивергенція вектора напруженості


Онлайн система числення Калькулятор онлайн звичайний Науковий калькулятор онлайн