Якщо в ту саму точку поля вносити різні заряди, то на них будуть діяти різні сили, але відношення сил до величини заряду буде зберігатися сталим для цієї точки поля:

Для різних точок поля можна скласти аналогічні співвідношення.
Відношення сили до величини пробного заряду називається напруженістю електричного поля. Напруженість – силова характеристики електричного поля; відношення сили до величини пробного заряду.
,
r – відстань від заряду Q, який створює поле до точки поля, де визначається напруженість.
Напруженість показує яка сила діяла б на одиничний позитивний (пробний) заряд, вміщений в дану точку поля. Е – векторна величина; за напрям беруть напрям сили, з якою заряд Q діє на дану точку.
Лінії, дотичні до яких в кожній точці збігаються з вектором напруженості в даній точці поля називаються лініями напруженості, або силовими лініями. Силові лінії ніколи не можуть бути замкнені самі на себе – вони завжди мають початок і кінець або йдуть у нескінченність. Вони направлені від позитивного заряду до негативного (виходять з позитивного заряду і входять в негативний). Лінії напруженості ніколи не перетинаються.

Рис.1.3
Електричне поле, у всіх точках якого напруженість однакова за величиною і напрямком називається однорідним (тобто заряд рівномірно розподілений по площині). Прикладом однорідного поля може бути поле плоского конденсатора на деякій відстані від країв пластин конденсатора.
Принцип суперпозиції полів(накладання електричних полів).
Результуюча сила, що діє на заряд Q з боку інших зарядів Q1 >0 і Q2<0 буде дорівнювати геометричній сумі сил F1 і F2 з боку зарядів Q1 і Q2.
Якщо поле створене двома зарядами, напруженість визначається за теоремою косинусів:
.
Рис.1.4
В загальному випадку: якщо в певній точці поля різні заряджені частинки створюють поля з напруженостями Е1, Е2, Е3... Еn , то результуюча напруженість поля в точці:
