русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Принцип действия гидролокатора

<== предыдущая статья | следующая статья ==>

Принцип действия гидролокатора показан на рис. 6.5.


Рис. 6.5. Функциональная схема гидролокатора

 

Акустическая антенна 1, герметически защищенная оболочкой 2, сделанной из прозрачного для звука материала, находится в воде. Через кабель она соединена с коммутатором 3, который поочередно подключает к ней генератор 4 или приемник-усилитель акустических сигналов 5. Последний соединен с селектором сигналов 6, выход которого подключен к микропроцессору 7. Выходы последнего подключены к индикатору 8 и к интерфейсному блоку 9.

Работой гидролокатора автоматически управляет микропроцессор 7. Он подает на генератор 4 сигнал о начале зондирования водного пространства и команды о параметрах этого зондирования (частота ультразвука, продолжительность, структура и мощность УЗ импульсов, периодичность их повторения и т.п.). Затем микропроцессор 7 подает сигнал на коммутатор 3, который пропускает электрические колебания от генератора 4 к антенне 1. Там они с помощью пьезоэлектрического осциллятора превращаются в мощные акустические колебания и излучаются антенной в окружающее водное пространство.

В одних вариантах работы УЗ волна излучается равномерно во всех направлениях нижележащего водного полупространства. В других вариантах УЗ волна излучается в виде направленного конусообразного пучка волн. Распространяясь в воде, волны натыкаются на имеющиеся в ней объекты, отражаются и рассеиваются ими. Часть отраженных и рассеянных УЗ волн в значительно ослабленном виде возвращаются назад к акустической антенне 1. Независимо от углового распределения излучения угловая диаграмма направленности этой антенны на прием всегда достаточно узкая, что обеспечивает прием акустических сигналов лишь с того направления, куда "смотрит" антенна. Сразу же после посылки мощного акустического зондирующего сигнала микропроцессор 7 переключает коммутатор 3 на прием. При этом акустические сигналы, которые возвратились к антенне 1 от имеющихся в воде объектов, поступают на приемник 5, усиливаются и передаются в селектор 6. Селектор выделяет из них лишь информационно полезные составляющие, которые и передает на микропроцессор 7. Последний обрабатывает собранную информацию и формирует на индикаторе для пользователя картину, которая воссоздает окружающую обстановку в водной среде. Через интерфейсный блок 9 микропроцессор 7 может передавать некоторую важную информацию другим приборам и получать дополнительную информацию от них, также отображая ее на индикаторе (например, данные о температуре воды, атмосферном давлении, о направлении и силе ветра и т.п.).

Во многих гидролокаторах, особенно предназначенных для пассажирских, промышленных и военных кораблей, акустическая антенна 1 является подвижной. Чтобы "видеть" большой сектор окружающего водного пространства, она может вращаться вокруг горизонтальной и/или вертикальной оси. Вращение по азимуту обычно возможно на все 360°. Тогда для привода антенны в составе гидролокатора имеется еще и сервоусилитель 10, управляемый тоже от микропроцессора 7.

Просмотров: 524

<== предыдущая статья | следующая статья ==>

Это будем вам полезно:

Волоконно-оптические ППР сенсоры

Виброметр ВВМ-311

Оптоэлектронные датчики давления

УЗ-сенсоры расстояния

Потенциометрические биосенсоры

Оборудование систем контроля доступа к объектам особой важности

Высокоскоростная камера

Акустические методы измерения температуры

Автоматизированные системы учета коммунальных телеметрических данных

Комплект индивидуальных измерителей дозы ИД-11

Ультразвуковые (акустические) методы измерения расхода

Биохимические экспресс-анализаторы крови CardioChek

Неинвазивные гемоглобиномеры 19.3.1. Первый сенсор гемоглобина, работавший "на отражение"

Потенциометрические электрохимические сенсоры 15.4.1. Концентрационная ячейка

Вернуться в оглавление:Методы и средства измерений неэлектрических величин




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.