русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция № 2. Соответствия и функции.


Дата добавления: 2013-12-23; просмотров: 1107; Нарушение авторских прав


А Ì В

 

Определение. Если А Í В, то множество А называется подмножествоммножества В (также говорят, что В покрывает А). Если при этом А ¹ В, то множество А называется собственным подмножеством множества В и обозначается А Ì В.

Замечание. Не следует считать равносильными отношения принадлежности и вхождения одного множества в другое . Можно привести следующий пример. Пусть А – множество всех студентов данной группы, а В – множество всех учебных групп данного института. Здесь , но , поскольку элементы этих множеств разнородны. Этот пример показывает также, что элементами множеств могут являться другие множества.

Парадокс Рассела. Задание множеств характеристическим предикатом может привести к противоречиям. Рассмотрим множество всех множеств, не содержащих себя в качестве элемента: . Если такое множество существует, то можно ответить на следующий вопрос: принадлежит ли оно само себе. С одной стороны, если , то . С другой стороны, если , то ! Это противоречие можно разрешить различными способами, в целом сводящимся к тому, что не является множеством.

Для трех множеств А, В, С справедливы следующие соотношения:

 

Связь между включением и равенством множеств устанавливается следующим соотношением:

Здесь знак Ù обозначает конъюнкцию(логическое “и”).

В заключение добавим, что Г. Кантор предложил использовать понятие “универсального множества” (универсум), как бы противоположного понятию пустого множества . По мысли Кантора, универсальное множество содержит все мыслимые множества, и при этом оно само содержится во множестве своих подмножеств в качестве элемента. В дальнейшем смысл и содержание понятия универсального множества будут раскрыты более подробно.

 

2. Операции над множествами и их свойства.



 

Определение. Объединениеммножеств А и В называется множество С, элементы которого принадлежат хотя бы одному из множеств А и В.

Обозначается С = А È В.

 

А

В

 

Геометрическое изображение множеств в виде области на плоскости называется диаграммой Эйлера – Вэйна.

 

Определение. Пересечениеммножеств А и В называется множество С, элементы которого принадлежат каждому из множеств А и В.

Обозначение С = А Ç В.

 

 

 

 

А С В

 

 

Для множеств А, В и С справедливы следующие свойства:

 

А Ç А = А È А = А; A È B = B È A; A Ç B = B Ç A;

 

(A Ç B) Ç C = A Ç (B Ç C); (A È B) È C = A È (B È C);

 

A È (B Ç C) = (A È B) Ç (A È C); A Ç (B È C) = (A Ç B) È (A Ç C);

 

A È (A Ç B) = A; A Ç (A È B) = A;

 

Æ = А; A Ç Æ = Æ;

 

 

Определение. Разностьюмножеств А и В называется множество, состоящее из элементов множества А, не принадлежащих множеству В.

Обозначается: С = А \ В.

 

 

 

А В

 

 

Определение. Симметрической разностью множеств А и В называется множество С, элементы которого принадлежат в точности одному из множеств А или В.

Обозначается: А D В.

 

 

А D В = (A \ B) È (B \ A)

 

A B

 

Определение. СЕ называется дополнениеммножества А относительно множества Е, если А Í Е и CЕ = Е \ A.

 

 

 

A E

 

 

Для множеств А, В и С справедливы следующие соотношения:

 

A \ B Í A; A \ A = Æ; A \ (A \ B) = A Ç B;

 

A D B = B D A; A D B = (A È B) \ (A Ç B);

 

A \ (B È C) = (A \ B) Ç (A \ C); A \ (B Ç C) = (A \ B) È (A \ C);

 

(A È B) \ C = (A \ C) È (B \ C); (A Ç B) \ C = (A \ C) Ç (B \ C);

 

A \ (B \ C) = (A \ B) È (A Ç C); (A \ B) \ C = A \ (B È C);

 

(A D B) D C = A D (B D C); A Ç (B D C) = (A Ç B) D (A Ç C);

 

A È CEA = E; A Ç CEA = Æ; CEE = Æ; CEÆ = E; CECEA = A;

 

CE(A È B) = CEA Ç CEB; CE(A Ç B) = CEA È CEB;

 

 

Пример 2. Исходя из определения равенства множеств и операций над множествами, доказать тождество и проверить его с помощью диаграммы Эйлера - Вэйна.

 

Из записанных выше соотношений видно, что

 

Æ= A \ В

 

Что и требовалось доказать.

Для иллюстрации полученного результата построим диаграммы Эйлера – Вэйна:

 

 

А В А В

 

AÇB

 

Пример 3. Исходя из определения равенства множеств и операций над множествами, доказать тождество.

A \ (B È C) = (A \ B) Ç (A \ C)

 

Если некоторый элемент х Î А \ (В È С), то это означает, что этот элемент принадлежит множеству А, но не принадлежит множествам В и С.

Множество А \ В представляет собой множество элементов множества А, не принадлежащих множеству В.

Множество А \ С представляет собой множество элементов множества А, не принадлежащих множеству С.

Множество (A \ B) Ç (A \ C) представляет собой множество элементов, которые принадлежат множеству А, но не принадлежат ни множеству В, ни множеству С.

Таким образом, тождество можно считать доказанным.

 

3. Векторы и прямые произведения.

 

Вектором (кортежем) в линейной алгебре и дискретной математике называют упорядоченный набор элементов. Это не есть определение вектора, поскольку целесообразнее это понятие считать основным.

Элементы, определяющие вектор, называются координатами или компонентами. Координаты нумеруются слева направо, а их число называется длиной или размерностью вектора. В отличие от элементов множества, координаты вектора могут совпадать. Координаты вектора заключаются в круглые скобки, например . Иногда скобки или запятые опускаются. Часто векторы длины 2 называются упорядоченными парами, длины 3 – тройками и т. д.

Определение. Два вектора равны, если они имеют равную длину и их соответствующие координаты равны. Иначе говоря, векторы и равны, если и .

Определение. Прямым произведением множеств А и В (обозначение ) называется множество всех упорядоченных пар , таких, что . В частности, если А=В, то обе координаты принадлежат множеству А, такое произведение обозначается А2. Аналогично, прямым произведением множеств называется множество всех векторов длины п, таких, что .

Пример 4. Множество - это множество всех упорядоченных пар действительных чисел, геометрической интерпретацией которого служит декартова координатная плоскость.

Координатное представление точек плоскости было впервые предложено Р. Декартом и исторически является первым примером прямого произведения. Поэтому часто прямое произведение множеств называют декартовым произведением.

Пример 5. Даны множества и . Тогда есть множество обозначений клеток шахматной доски.

Вообще конечное множество, элементами которого являются какие-либо символы (буквы, цифры, знаки препинания, знаки операций и т. д.) называется алфавитом. Любые элементы множества в этом случае являются словами длины п в алфавите А. Например, десятичное целое число – это слово в алфавите цифр.

Определение. Проекцией вектора на некоторую ось называется его компонента (координата) с соответствующим порядковым номером (обозначается прia). Например, проекция точки плоскости на 1-ю ось есть её абсцисса (первая координата).

Теорема 1.1. Мощность произведения конечных множеств равна произведению мощностей этих множеств: .

Следствие. .

Эта простая теорема и её следствие впоследствии широко используются в комбинаторике.

 

 

 

1. Соответствия.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: .

Если , то говорят, что соответствует при соответствии . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия .

В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым, если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным.

Соответствие называется сюръективным, если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества соответствует единственный элемент множества .

Соответствие называется инъективным, если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.



<== предыдущая лекция | следующая лекция ==>
Лекция № 1. Множества и операции над ними. | Пример 1.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.