русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Синтез комбинационных сумматоров

Полусумматор это логическая цепь, которая вырабатывает сигналы суммы (S) и переноса (С) при сложении двух двоичных чисел а и в.

Составим таблицу функционирования.


 

а

в

S

C

0

0

0

0

1

0

1

0

0

1

1

0

1

1

0

1

Из таблицы получим:

. – сигнал суммы;

 - сигнал переноса.

 Эти выражения упрощению не поддаются.


 

Приведем к виду, удобному для реализации на элементах ИЛИ-НЕ.

.

         

 

исходя из полученных формул составим схему полусумматора (рис. 2.20, а):

 

Рис.2.20. Схема полусумматора

 

Поскольку полусумматор имеет широкое применение и его выпускают в виде отдельной микросхемы, он имеет собственное обозначение (рис. 2.20 б).

 

Составляя дизъюнктивную нормальную форму для полусумматора, мы получили следующие булевы функции:

 и

Следовательно, перенос происходит с помощью функции И, а выработка сигнала суммы (функции неравнозначности) производится элементом ИСКЛЮЧАЮЩЕЕ – ИЛИ. На рис.2.21 показана схема полусумматора, составленная из этих элементов.

 

Рис. 2.21. Схема полусумматора.

 

 

Сумматор. В отличие от полусумматора должен воспринимать 3 входных сигнала: 2 слагаемых и сигнал переноса с предыдущего разряда.

Сумматором называется операционный узел ЭВМ, выполняющий операцию арифметического сложения двух чисел.

         Чтобы понять сущность работы комбинационного сумматора, рассмотрим примеры суммирования двух одноразрядных двоичных чисел:

 

 

         Из приведенных примеров (1 - 4) видно, что если отсутствует перенос из младшего разряда, то перенос в старший разряд может быть только в одном случае, когда оба числа равны единице. Если же имеется перенос из младшего разряда, то перенос в старший разряд будет всегда, кроме одного случая, когда оба слагаемых равны нулю.

         Составим таблицу функционирования:

 

 

ai

bi

Сi

Si

Сi+1

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

 

  

         Схема сумматора может быть реализована на двух полусумматорах, соединенных как указано на схеме рис. 2.22. В этой схеме выделим промежуточные сигналы Pi, gi, ri. Введем эти сигналы в новую таблицу функционирования. Соответствие работы этой схемы (рис. 2.22) и таблицы фунционирования можно проверить перебором всех возможных вариантов.

      

 

Рис. 2.22. Схема полного сумматора

  

Многоразрядный сумматор с последовательным переносом. Таким образом, в общем случае для каждого разряда необходима логическая схема с тремя входами ai, bi, Ci и двумя выходами Si, Ci+1. Такая схема и есть полный сумматор. Ее можно реализовать с помощью двух полусумматоров.

 

 

 

Входы

Промежуточные величины

Выходы

ai

bi

сi

Pi

gi

ri

Si

Ci+1

0

0

0

0

0

0

0

0

0

1

0

1

0

0

1

0

1

0

0

1

0

0

1

0

1

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

1

0

1

0

1

1

1

1

0

1

0

1

1

       

Для сложения двух многоразрядных двоичных чисел на каждый разряд необходим один полный сумматор. Только в младшем разряде можно обойтись полусумматором. На рис. 2.23 приведена схема, предназначенная для сложения двух четырехразрядных чисел А и В. Эта схема выпускается в интегральном исполнении. В ее младшем разряде также используется полный сумматор, чтобы иметь возможность наращивания разрядности схемы.

 

       

     

Рис. 2.23. Сумматор с последовательным переносом

     

Сумматоры с параллельным переносом. Время выполнения операции в сумматоре с параллельным переносом намного больше времени сложения в одноразрядном сумматоре. Действительно, сигнал переноса С4 только тогда может принять истинное значение, когда будет установлено правильное значение С3. Такой порядок выполнения операций называется последовательным переносом (Ripple Carry).

Чтобы уменьшить время операции сложения многоразрядных чисел можно использовать схемы параллельного переноса (Carry look-ahead). При этом все сигналы переноса вычисляются непосредственно по значениям входных переменных.

Согласно таблице переключений, в общем случае для сигнала переноса любого i-го разряда справедливо соотношение:

  .                                     (1)

Величины gi, ri вычисляются в качестве промежуточных результатов и в полном сумматоре. Следовательно, их получение не требует дополнительных затрат. Смысл этих величин объясняется совсем просто. Сигнал gi вырабатывается тогда, когда в данном разряде перенос происходит из-за комбинации входных переменных ai,bi. Поэтому его называют функцией генерации переноса. Сигнал Pi показывает, передается ли полученный в младшем разряде сигнал переноса Ci дальше. Поэтому он называется функцией распространения переноса.

Пользуясь выражением (1), можно вывести следующие формулы для вычисления сигналов переноса:  

 

                 (2)  

 

 

 

 

 

 

 

    

Очевидно, что хотя полученные выражения достаточно сложные, время формирования сигнала переноса в любой разрад с помощью вспомогательных функций определяется только времением здержки распространения сигнала на двух элементах. Эти функции реализуются специальным комбинационным устройством – схемой ускоренного переноса.

Схема сумматора с параллельным переносом приведена на рис. 2.24, а. На рис. 2.24, б изображена схема устройства параллельного переноса в группе из четырех разрядов. Эта схема реализует систему уравнений (2).

   

 

 

   

Рис. 2.24. Схема сумматора с параллельным переносом

 

   

Рис. 2.25. Схема ускоренного переноса

  

  Схема выпускается в интегральном исполнении.

Сложение чисел, содержащих более четырех разрядов, можно реализовать подключением нескольких четырехразярадных сумматоров.

 

 

Просмотров: 7102

Вернуться в оглавление:Цифровые автоматы




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.