русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Уровень Ферми и его температурная зависимость.


Дата добавления: 2015-07-09; просмотров: 10194; Нарушение авторских прав


Для начала, нужно рассмотреть понятие энергии Ферми, так как это понятие, само по себе, есть ответом на Ваши вопросы.

Энергия Ферми
Энергия Ферми - максимальная энергия электронов при температуре в 0 К. Энергия Ферми растет с увеличением количества электронов в квантовой системе и, соответственно, уменьшается с уменьшением количества электронов (фермионов) . Это обусловливается возникающим интенсивным обменным и электростатическим взаимодействием в области перекрытия зарядовых плотностей волновых функций электронов при росте количества электронов.
Энергия и импульс Ферми есть граничными энергией и импульсом перехода электрона в свободное состояние. Поверхность в пространстве импульсов при 0 К, под которой все квантовые состояния заняты (то есть, нахождение электронов на заполненных орбиталях) , есть поверхностью Ферми.
При увеличении температуры возникает корреляция атомов и выделяются фононы, которые поглощаются электронами. В результате импульс электронов превышает граничный импульс Ферми, и они переходят в разрешенную зону (формально, есть квазисвободными частицами) .

Уровень Ферми в полупроводниках различных типов проводимости
Следует заметить, что в любом полупроводнике при стремлении температуры к абсолютному нулю уровень Ферми находится посередине запрещенной зоны. Но при повышении температуры в примесных полупроводниках он смещается либо вверх, либо вниз. Причина этого - в переходе электронов с валентной зоны в зону проводимости или наоборот, что обусловливает изменение энергии зоны проводимости и последующее смещение уровня Ферми (что Вас, собственно, и интересует) .
В случае с беспримесными полупроводниками, уровень Ферми при любой температуре проходит по середине запрещенной зоны.
В случае с n-полупроводниками, количество электронов в зоне проводимости больше, чем у беспримесных полупроводников, поэтому средняя энергия электронов в зоне проводимости, в силу того же роста суммарной энергии системы при увеличении количества фермионов, повышается. Из-за этого, чтобы покинуть валентную зону и перейти в зону проводимости, электрону в n-полупроводнике требуется больше энергии, чем электрону из беспримесного полупроводника. Потому уровень Ферми находится выше средины запрещенной зоны. Формально, уровень Ферми в n-полупроводниках лежит посередине между дном зоны проводимости и донорным уровнем.



В случае с p--полупроводниками, наблюдается обратная ситуация: чем большая концентрация акцепторов (например, атомов In), тем меньшая средняя плотность энергии электронов в зоне проводимости полупроводника, тем меньше средняя энергия на один электрон, и тем меньшая энергия требуется электрону, чтобы перейти в зону проводимости. Потому уровень Ферми находится ниже средины запрещенной зоны.

25.Для полупроводников с одним носителем заряда удельная электропроводность γ определяется выражением

где n − концентрация свободных носителей заряда, м-3; q − величина заряда каждого из них; μ − подвижность носителей заряда, равная средней скорости носителя заряда (υ) к напряженности поля (E): υ/E, м2/(B∙c).

На рисунке 5.3 представлена температурная зависимость концентрации носителей.

В области низких температур участок зависимости между точками а и б характеризует только концентрацию носителей, обусловленную примесями. С увеличением температуры число носителей, поставляемых примесями, возрастает, пока не истощатся электронные ресурсы примесных атомов (точка б). На участке б-в примеси уже истощены, а перехода электронов основного полупроводника через запрещенную зону еще не обнаруживается. Участок кривой с постоянной концентрацией носителей заряда называют областью истощения примесей. В дальнейшем температура возрастает настолько, что начинается быстрый рост концентрации носителей вследствие перехода электронов через запрещенную зону (участок в-г). Наклон этого участка характеризует ширину запрещенной зоны полупроводника (тангенс угла наклона α даёт значение ΔW). Наклон участка а-б зависит от энергии ионизации примесей ΔWп.

 

 

Рис. 5.3. Типичная зависимость концентрации носителей заряда

Рис. 5.4. Температурная зависимость подвижности носителей

Увеличение подвижности свободных носителей заряда с повышением температуры объясняется тем, что чем выше температура, тем больше тепловая скорость движения свободного носителя υ. Однако при дальнейшем увеличении температуры усиливаются тепловые колебания решетки и носители заряда начинают все чаще с ней сталкиваться, подвижность падает.

 

Электронно-дырочным переходом (р-п-переходом) называют тонкий слой между двумя областями полупроводникового кристалла, одна из которых имеет электронную, а другая – дырочную электропроводность.

Технологический процесс создания электронно-дырочного перехода может быть раз­личным:

1. сплавление (сплавные диоды);

2. диффузия одного вещества в другое (диф­фузионные диоды);

3. эпитаксия — ориентированный рост одного кристалла на поверхности другого (эпитаксиальные диоды) и др.

26.Статистический метод— это метод исследования систем из большого числа частиц, оперирующий статистическими закономерностями и средними(усредненными) значениями физических величин, характеризующих всю систему. Этот метод лежит в основе молекулярной физики — раздела физики, изучающего строение и свойства вещества исходяиз молекулярно- кинетических представлений, основывающихся на том, что все тела состоят из атомов, молекул или ионов находящихся в непрерывном хаотическом движении.

Термодинамический метод— это метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом(например, давление, объем, температура) при различных превращениях энергии, происходящих в системе, не учитывая при этом внутреннего строения изучаемых тел и характера движения отдельных частиц. Этот метод лежит в основе термодинамики — раздела физики, изучающего общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

27.Расстояние, проходимое молекулой в среднем без столкновений, называется средней длиной свободного пробега <λ>.

все молекулы движутся (и в стороны, и навстречу друг другу), поэтому число соударений определяется средней скоростью движения молекул относительно друг друга.

Средняя длина свободного пробега молекул (средняя длина пути молекул между двумя столкновениями):

= = = .

При постоянной температуре n изменяется пропорционально давлению P, поэтому средняя длина свободного пробега обратно пропорциональна давлению. При уменьшении давления средняя длина свободного пробега быстро возрастает.

Среднее перемещениеброуновской частицы не зависит от массы.

Среднее число столкновений за 1 с равно числу молекул в объеме.

28.В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса).

Диффузия— самопроизвольное проникновение или перемешивание частиц 2-х или нескольких соприкасающихся тел. Существует до тех пор, пока существует градиент плотности. Явление диффузии для химически однородного газа подчиняется закону Фика:

(3)

где jmплотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D — диффузия (коэффициент диффузии), dρ/dx — градиент плотности, который равен скорости изменения плотности

Теплопроводность— перенос теплоты вследствие градиента температуры.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. выравнивание температур.

Закон теплопроводности Фурье:

Плотность теплового потока, переносимого в единицу времени, через единицу площади прямопропорционально: dT/dx.

где − плотность теплового потока, λ− теплопроводность, dT/dx − градиент температуры. −теплопроводность, гдеCv − удельная теплоемкость газа при постоянном объеме, P− плотность газа,<v> − средняя скорость теплового движения молекул, <l> − средняя длина свободного пробега

Вязкое течение— перенос импульса, связанный с градиентом средней массовой скорости.

Закон Ньютона для вязкости: плотность потока импульса, переносимого за единицу времени через единицу площади прямопропорционально градиенту скоростиdv/dx.

—динамический коэффициент вязкости

29
Количество теплоты Q
- энергия, которую тело теряет или приобретает при передаче тепла.
Формула количества теплоты зависит от протекающего процесса.

Формулы количества теплоты при некоторых процессах:

Количество теплоты при нагревании и охлаждении.

Количество теплоты при плавлении или кристаллизации.

Количество теплоты при кипении, испарении жидкости и конденсации пара.

Количество теплоты при сгорании топлива.

Количество теплоты всегда передается от более горячихтел к более холодным до достижения ими одинаковой температуры (теплового равновесия), если нет иных процессов, кроме теплопередачи.
В замкнутой системе тел выполняется уравнение теплового балланса: Q1 + Q2 + ... = 0 - количество теплоты, которое теряют горячие тела, равно количеству тепла, получаемому холодными.

Полезные формулы:

Количество теплоты, переданное телу,
идет на изменение его внутренней энергии
и на совершение им работы (Первый закон термодинамики).

Закон Джоуля-Ленца:в неподвижном металлическом проводнике вся энергия электрического тока превращается в тепло:

- закон Джоуля - Ленца.

 

Все тела состоят из молекул, которые непрерывно движутся и взаимодействуют друг с другом.

Они обладают одновременно кинетической и потенциальной энергией.

Эти энергии и составляют внутреннюю энергию тела.

 

 

Таким образом, внутренняя энергия - это энергия движения и взаимодействия частиц,

из которых состоит тело.

Внутренняя энергия характеризует тепловое состояние тела.

 
Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, которые происходят с термодинамическими системами, отдельно рассматриваются изопроцессы, при которых один из основных параметров состояния остается постоянным. Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 1), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е. Из первого начала термодинамики (δQ=dU+δA) для изохорного процесса следует, что вся теплота, которая сообщается газу, идет на увеличение его внутренней энергии: т.к. CV=dUm/dt, Тогда для произвольной массы газа получим (1) Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, которая параллельна оси V. При изобарном процессе работа газа при увеличения объема от V1 до V2 равна (2) и равна площади заштрихованного прямоугольника (рис. 2). Если использовать уравнение Менделеева-Клапейрона для выбранных нами двух состояний, то и откуда Тогда выражение (2) для работы изобарного расширения примет вид (3) Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2 —T1 = 1К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.   Рис.1 В изобарном процессе при сообщении газу массой m количества теплоты его внутренняя энергия возрастает на величину (т.к. CV=dUm/dt) При этом газ совершит работу, определяемую выражением (3). Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля—Мариотта: Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, которая расположена на диаграмме тем выше, чем выше температура, при которой происходит процесс. Исходя из формул для работы газа и уравнения Менделеева-Клайперона найдем работу изотермического расширения газа: Так как при Т=const внутренняя энергия идеального газа не изменяется: то из первого начала термодинамики (δQ=dU+δA) следует, что для изотермического процесса т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил: (4) Значит, для того чтобы при расширении газа температура не становилась меньше, к газу в течение изотермического процесса необходимо подводить количество теплоты, равное внешней работе расширения.

 

(30)

Теплоёмкостью системы называется количество тепла, которое необходимо сообщить системе, чтобы температура её увеличилась на 1o. Если под системой понимается 1 моль вещества, то теплоёмкость называется молярной и обозначается C.

Адиабатический процесс - это такое изменение состояний газа, при котором он не отдает и не поглощает извне теплоты. Следовательно, адиабатический процесс характеризуется отсутствием теплообмена газа с окружающей средой. Адиабатическими можно считать быстро протекающие процессы. Так как передачи теплоты при адиабатическом процессе не происходит, то и уравнение I начала термодинамики принимает вид

(9.20)

или

т.е. внешняя работа газа может производиться вследствие изменения его внутренней энергии. Адиабатное расширение газа (dV>0) сопровождается положительной внешней работой, но при этом внутренняя энергия уменьшается и газ охлаждается (dT<0).

Сжатие газа (dV0, т.е. адиабатное сжатие газа сопровождается его нагреванием.

(31)

 

Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.

 

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.

 

В термодинамике цикл Карно́ или процесс Карно — это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником.

 

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

 

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.

 

 


Пусть тепловая машина состоит из нагревателя с температурой T_H, холодильника с температурой T_X и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→Б). В начале процесса рабочее тело имеет температуру T_H, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q_H. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника T_X, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс В→Г). Рабочее тело, имеющее температуру T_X, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q_X. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах.

 

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

 

Второе начало термодинамики является постулатом, не доказываемым в рамках классической термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

 

(32)



<== предыдущая лекция | следующая лекция ==>
Полупроводниковые соединения типа АIII В V . | 


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.