русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Способы предотвращения тупиков путем тщательного распределения ресурсов. Алгоритм банкира 12 страница


Дата добавления: 2013-12-23; просмотров: 1152; Нарушение авторских прав


- Системный администратор должен иметь возможность вести учет всех событий, относящихся к безопасности.

- Система должна защищать себя от внешнего влияния или навязывания, такого как модификация загруженной системы или системных файлов, хранящихся на диске.

Сегодня на смену оранжевой книге пришел стандарт Common Criteria, а набор критериев Controlled Access Protection Profile сменил критерии класса С2.

Основополагающие документы содержат определения многих ключевых понятий, связанных с информационной безопасностью. Некоторые из них (аутентификация, авторизация, домен безопасности и др.) будут рассмотрены в следующей лекции. В дальнейшем мы также будем оперировать понятиями "субъект" и "объект" безопасности. Субъект безопасности - активная системная составляющая, к которой применяется политика безопасности, а объект - пассивная. Примерами субъектов могут служить пользователи и группы пользователей, а объектов - файлы, системные таблицы, принтер и т.п.

По существу, проектирование системы безопасности подразумевает ответы на следующие вопросы: какую информацию защищать, какого рода атаки на безопасность системы могут быть предприняты, какие средства использовать для защиты каждого вида информации? Поиск ответов на данные вопросы называется формированием политики безопасности, которая помимо чисто технических аспектов включает также и решение организационных проблем. На практике реализация политики безопасности состоит в присвоении субъектам и объектам идентификаторов и фиксации набора правил, позволяющих определить, имеет ли данный субъект авторизацию, достаточную для предоставления к данному объекту указанного типа доступа.

Формируя политику безопасности, необходимо учитывать несколько базовых принципов. Так, Зальтцер (Saltzer) и Шредер (Schroeder) (1975) на основе своего опыта работы с MULTICS сформулировали следующие рекомендации для проектирования системы безопасности ОС.



- Проектирование системы должно быть открытым. Нарушитель и так все знает (криптографические алгоритмы открыты).

- Не должно быть доступа по умолчанию. Ошибки с отклонением легитимного доступа будут обнаружены скорее, чем ошибки там, где разрешен неавторизованный доступ.

- Нужно тщательно проверять текущее авторство. Так, многие системы проверяют привилегии доступа при открытии файла и не делают этого после. В результате пользователь может открыть файл и держать его открытым в течение недели и иметь к нему доступ, хотя владелец уже сменил защиту.

- Давать каждому процессу минимум возможных привилегий.

- Защитные механизмы должны быть просты, постоянны и встроены в нижний слой системы, это не аддитивные добавки (известно много неудачных попыток "улучшения" защиты слабо приспособленной для этого ОС MS-DOS).

- Важна физиологическая приемлемость. Если пользователь видит, что защита требует слишком больших усилий, он от нее откажется. Ущерб от атаки и затраты на ее предотвращение должны быть сбалансированы.

Приведенные соображения показывают необходимость продумывания и встраивания защитных механизмов на самых ранних стадиях проектирования системы.

 

15.4. Криптография как одна из базовых технологий безопасности ОС

Многие службы информационной безопасности, такие как контроль входа в систему, разграничение доступа к ресурсам, обеспечение безопасного хранения данных и ряд других, опираются на использование криптографических алгоритмов. Имеется обширная литература по этому актуальному для безопасности информационных систем вопросу.

Шифрование – процесс преобразования сообщения из открытого текста (plaintext) в шифротекст (ciphertext) таким образом, чтобы:

- его могли прочитать только те стороны, для которых оно предназначено;

- проверить подлинность отправителя (аутентификация);

- гарантировать, что отправитель действительно послал данное сообщение.

В алгоритмах шифрования предусматривается наличие ключа. Ключ – это некий параметр, не зависящий от открытого текста. Результат применения алгоритма шифрования зависит от используемого ключа. В криптографии принято правило Кирхгофа: "Стойкость шифра должна определяться только секретностью ключа". Правило Кирхгофа подразумевает, что алгоритмы шифрования должны быть открыты.

В методе шифрования с секретным или симметричным ключом имеется один ключ, который используется как для шифрования, так и для расшифровки сообщения. Такой ключ нужно хранить в секрете. Это затрудняет использование системы шифрования, поскольку ключи должны регулярно меняться, для чего требуется их секретное распространение. Наиболее популярные алгоритмы шифрования с секретным ключом: DES, TripleDES, ГОСТ и ряд других.

Часто используется шифрование с помощью односторонней функции, называемой также хеш- или дайджест-функцией. Применение этой функции к шифруемым данным позволяет сформировать небольшой дайджест из нескольких байтов, по которому невозможно восстановить исходный текст. Получатель сообщения может проверить целостность данных, сравнивая полученный вместе с сообщением дайджест с вычисленным вновь при помощи той же односторонней функции. Эта техника активно используется для контроля входа в систему. Например, пароли пользователей хранятся на диске в зашифрованном односторонней функцией виде. Наиболее популярные хеш-функции: MD4, MD5 и др.

В системах шифрования с открытым или асимметричным ключом (public/asymmetric key) используется два ключа (рис. 15.1). Один из ключей, называемый открытым, несекретным, используется для шифрования сообщений, которые могут быть расшифрованы только с помощью секретного ключа, имеющегося у получателя, для которого предназначено сообщение. Иногда поступают по-другому. Для шифрования сообщения используется секретный ключ, и если сообщение можно расшифровать с помощью открытого ключа, подлинность отправителя будет гарантирована (система электронной подписи). Этот принцип изобретен Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом (Martin Hellman) в 1976г.

Рис. 15.1. Шифрование открытым ключом

 

Использование открытых ключей снимает проблему обмена и хранения ключей, свойственную системам с симметричными ключами. Открытые ключи могут храниться публично, и каждый может послать зашифрованное открытым ключом сообщение владельцу ключа. Однако расшифровать это сообщение может только владелец открытого ключа при помощи своего секретного ключа, и никто другой. Несмотря на очевидные удобства, связанные с хранением и распространением ключей, асимметричные алгоритмы гораздо менее эффективны, чем симметричные, поэтому во многих криптографических системах используются оба метода.

Среди несимметричных алгоритмов наиболее известен RSA, предложенный Роном Ривестом (Ron Rivest), Ади Шамиром (Adi Shamir) и Леонардом Эдлманом (Leonard Adleman). Рассмотрим его более подробно.

 

15.5. Шифрование с использованием алгоритма RSA

Идея, положенная в основу метода, состоит в том, чтобы найти такую функцию у=Φ(х), для которой получение обратной функции х = Г (у) было бы в общем случае очень сложной задачей (NP-полной задачей). Например, получить произведение двух чисел n=pЧq просто, а разложить пна множители, если р и q достаточно большие простые числа, - NP-полная задача с вычислительной сложностью - п. Однако если знать некую секретную информацию, то найти обратную функцию х=Г (у) существенно проще. Такие функции также называют односторонними функциями с лазейкой или потайным ходом.

Применяемые в RSA прямая и обратная функции просты. Они базируются на применении теоремы Эйлера из теории чисел.

Прежде чем сформулировать теорему Эйлера, необходимо определить важную функцию Φ(п) из теории чисел, называемую функцией Эйлера. Это число взаимно простых (взаимно простыми называются целые числа, не имеющие общих делителей) с пцелых чисел, меньших п. Например,

Φ(7)=6. Очевидно, что, если р и q простые числа и p^q, то Φ(р)=р-1, и Φ(pq)=(p-l)×(q-l).

Теорема Эйлера

Теорема Эйлера утверждает, что для любых взаимно простых чисел хи п(х< п)

Φ ^-'mod n = 1 или в более общем виде хкΦ(п)+1тос1п= 1

Сформулируем еще один важный результат. Для любого т>0 и 0<е<т, где еи твзаимно просты, найдется единственное 0<d<m, такое, что

de mod m = 1.

Здесь d легко можно найти по обобщенному алгоритму Евклида (см., например, Д. Кнут. Искусство программирования на ЭВМ, т.2, 4.5.2). Известно, что вычислительная сложность алгоритма Евклида ~ In n.

Подставляя Φ(п) вместо т, получим de modΦ(n)=l

или

de = кΦ(п)+1

 

Тогда прямой функцией будет

 

e Φ(x) = x mod n

где x – положительное целое, x<n=pq, p и q – целые простые числа и, следовательно,

Φ(n)=(p-1)(q-1)

где e – положительное целое и e<Φ(n). Здесь e и n открыты. Однако p и q неизвестны (чтобы их найти, нужно выполнить разбиение n на множители), следовательно, неизвестна и Φ(n), а именно они и составляют потайной ход.

Вычислим обратную функцию

-1 d ed kΦ(n)+1

Φ (y) = y mod n = x mod n = x mod n = x

Последнее преобразование справедливо, поскольку x<n и x и n взаимно просты.

При практическом использовании алгоритма RSA вначале необходимо выполнить генерацию ключей. Для этого нужно:

1. Выбрать два очень больших простых числа p и q;

2. Вычислить произведение n=p×q;

3. Выбрать большое случайное число d, не имеющее общих сомножителей с числом (p-1)×(q-1);

4. Определить число e, чтобы выполнялось (e×d)mod((p-1)×(q-1))=1 .

Тогда открытым ключом будут числа e и n, а секретным ключом – числа d и n.

Теперь, чтобы зашифровать данные по известному ключу {e,n}, необходимо сделать следующее.

- Разбить шифруемый текст на блоки, где i-й блок представить в виде числа M, величина которого меньше, чем n. Это можно сделать различными способами, например? используя вместо букв их номера в алфавите.

- Зашифровать текст, рассматриваемый как последовательность чисел m(i), по формуле e c(i)=(m(i) )mod n.

Чтобы расшифровать эти данные, используя секретный ключ {d,n}, необходимо вычислить: m(i) = d (c(i) ) mod n. В результате будет получено множество чисел m(i), которые представляют собой часть исходного текста.

Например, зашифруем и расшифруем сообщение "AБВ", которое представим как число 123.

Находим п=5× 11=55.

Выбираем p=5 и q=11 (числа на самом деле должны быть большими).

 

Определяем (p-1)Ч(q-1)=40. Тогда d будет равно, например, 7.

Выберем e, исходя из (e×7) mod 40=1. Например, e=3.

Теперь зашифруем сообщение, используя открытый ключ {3,55}

3 C1 = (1 ) mod 55 = 1

3 C2 = (2 ) mod 55 = 8

3 C3 = (3 ) mod 55 = 27

Теперь расшифруем эти данные, используя закрытый ключ {7,55}.

7 M1 = (1 ) mod 55 = 1

7 M2 = (8 ) mod 55 = 2097152 mod 55 = 2

7 M3 = (27 ) mod 55 = 10460353203 mod 55 = 3

Таким образом, все данные расшифрованы.

 

15.6. Выводы по лекции 15

Информационная безопасность относится к числу дисциплин, развивающихся чрезвычайно быстрыми темпами. Только комплексный, систематический, современный подход способен успешно противостоять нарастающим угрозам.

Ключевые понятия информационной безопасности: конфиденциальность, целостность и доступность информации, а любое действие, направленное на их нарушение, называется угрозой.

Основные понятия информационной безопасности регламентированы в основополагающих документах.

Существует несколько базовых технологий безопасности, среди которых можно выделить криптографию.

 

ЛЕКЦИЯ 16. ЗАЩИТНЫЕ МЕХАНИЗМЫ ОПЕРАЦИОННЫХ СИСТЕМ

Перейдем к описанию системы защиты операционных систем. Ее основными задачами являются идентификация, аутентификация, разграничение доступа пользователей к ресурсам, протоколирование и аудит самой системы.

 

16.1. Идентификация и аутентификация

Для начала рассмотрим проблему контроля доступа в систему. Наиболее распространенным способом контроля доступа является процедура регистрации. Обычно каждый пользователь в системе имеет уникальный идентификатор. Идентификаторы пользователей применяются с той же целью, что и идентификаторы любых других объектов, файлов, процессов. Идентификация заключается в сообщении пользователем своего идентификатора. Для того чтобы установить, что пользователь именно тот, за кого себя выдает, то есть что именно ему принадлежит введенный идентификатор, в информационных системах предусмотрена процедура аутентификации (authentication, опознавание, в переводе с латинского означает "установление подлинности"), задача которой - предотвращение доступа к системе нежелательных лиц.

Обычно аутентификация базируется на одном или более из трех пунктов:

- то, чем пользователь владеет (ключ или магнитная карта);

- то, что пользователь знает (пароль);

- атрибуты пользователя (отпечатки пальцев, подпись, голос).

 

16.2. Пароли, уязвимость паролей

Наиболее простой подход к аутентификации - применение пользовательского пароля.

Когда пользователь идентифицирует себя при помощи уникального идентификатора или имени, у него запрашивается пароль. Если пароль, сообщенный пользователем, совпадает с паролем, хранящимся в системе, система предполагает, что пользователь легитимен. Пароли часто используются для защиты объектов в компьютерной системе в отсутствие более сложных схем защиты.

Недостатки паролей связаны с тем, что трудно сохранить баланс между удобством пароля для пользователя и его надежностью. Пароли могут быть угаданы, случайно показаны или нелегально переданы авторизованным пользователем неавторизованному.

Есть два общих способа угадать пароль. Один связан со сбором информации о пользователе. Люди обычно используют в качестве паролей очевидную информацию (скажем, имена животных или номерные знаки автомобилей). Для иллюстрации важности разумной политики назначения идентификаторов и паролей можно привести данные исследований, проведенных в AT&T, показывающие, что из 500 попыток несанкционированного доступа около 300 составляют попытки угадывания паролей или беспарольного входа по пользовательским именам guest, demo и т.д.

Другой способ - попытаться перебрать все наиболее вероятные комбинации букв, чисел и знаков пунктуации (атака по словарю). Например, четыре десятичные цифры дают только 10 000 вариантов, более длинные пароли, введенные с учетом регистра символов и пунктуации, не столь уязвимы, но, тем не менее, таким способом удается разгадать до 25% паролей. Чтобы заставить пользователя выбрать трудноугадываемый пароль, во многих системах внедрена реактивная проверка паролей, которая при помощи собственной программы-взломщика паролей может оценить качество пароля, введенного пользователем.

Несмотря на все это, пароли распространены, поскольку они удобны и легко реализуемы.

 

16.3. Шифрование пароля

Для хранения секретного списка паролей на диске во многих ОС используется криптография. Система задействует одностороннюю функцию, которую просто вычислить, но для которой чрезвычайно трудно (разработчики надеются, что невозможно) подобрать обратную функцию.

Например, в ряде версий Unix в качестве односторонней функции используется модифицированный вариант алгоритма DES. Введенный пароль длиной до 8 знаков преобразуется в 56-битовое значение, которое служит входным параметром для процедуры crypt(), основанной на этом алгоритме. Результат шифрования зависит не только от введенного пароля, но и от случайной последовательности битов, называемой привязкой (переменная salt). Это сделано для того, чтобы решить проблему совпадающих паролей. Очевидно, что саму привязку после шифрования необходимо сохранять, иначе процесс не удастся повторить. Модифицированный алгоритм DES выполняется, имея входное значение в виде 64-битового блока нулей, с использованием пароля в качестве ключа, а на каждой следующей итерации входным параметром служит результат предыдущей итерации. Всего процедура повторяется 25 раз. Полученное 64-битовое значение преобразуется в 11 символов и хранится рядом с открытой переменной salt.

В ОС Windows преобразование исходного пароля также осуществляется многократным применением алгоритма DES и алгоритма MD4.

Хранятся только кодированные пароли. В процессе аутентификации представленный пользователем пароль кодируется и сравнивается с хранящимися на диске. Таким образом, файл паролей нет необходимости держать в секрете.

При удаленном доступе к ОС нежелательна передача пароля по сети в открытом виде. Одним из типовых решений является использование криптографических протоколов. В качестве примера можно рассмотреть протокол опознавания с подтверждением установления связи путем вызова - CHAP (Challenge Handshake Authentication Protocol).

Опознавание достигается за счет проверки того, что у пользователя, осуществляющего доступ к серверу, имеется секретный пароль, который уже известен серверу.

Пользователь инициирует диалог, передавая серверу свой идентификатор. В ответ сервер посылает пользователю запрос (вызов), состоящий из идентифицирующего кода, случайного числа и имени узла сервера или имени пользователя. При этом пользовательское оборудование в результате запроса пароля пользователя отвечает следующим ответом, зашифрованным с помощью алгоритма одностороннего хеширования, наиболее распространенным видом которого является MD5. После получения ответа сервер при помощи той же функции с теми же аргументами шифрует собственную версию пароля пользователя. В случае совпадения результатов вход в систему разрешается. Существенно, что незашифрованный пароль при этом по каналу связи не посылается.

 

16.4. Авторизация. Разграничение доступа к объектам ОС

После успешной регистрации система должна осуществлять авторизацию (authorization) - предоставление субъекту прав на доступ к объекту. Средства авторизации контролируют доступ легальных пользователей к ресурсам системы, предоставляя каждому из них именно те права, которые были определены администратором, а также осуществляют контроль возможности выполнения пользователем различных системных функций. Система контроля базируется на общей модели, называемой матрицей доступа. Рассмотрим ее более подробно.

Как уже говорилось в предыдущей лекции, компьютерная система может быть смоделирована как набор субъектов (процессы, пользователи) и объектов. Под объектами мы понимаем как ресурсы оборудования (процессор, сегменты памяти, принтер, диски и ленты), так и программные ресурсы (файлы, программы, семафоры), то есть все то, доступ к чему контролируется. Каждый объект имеет уникальное имя, отличающее его от других объектов в системе, и каждый из них может быть доступен через хорошо определенные и значимые операции.

Операции зависят от объектов. Например, процессор может только выполнять команды, сегменты памяти могут быть записаны и прочитаны, считыватель магнитных карт может только читать, а файлы данных могут быть записаны, прочитаны, переименованы и т.д.

Желательно добиться того, чтобы процесс осуществлял авторизованный доступ только к тем ресурсам, которые ему нужны для выполнения его задачи. Это требование минимума привилегий, уже упомянутое в предыдущей лекции, полезно с точки зрения ограничения количества повреждений, которые процесс может нанести системе. Например, когда процесс P вызывает процедуру А, ей должен быть разрешен доступ только к переменным и формальным параметрам, переданным ей, она не должна иметь возможность влиять на другие переменные процесса.

Аналогично компилятор не должен оказывать влияния на произвольные файлы, а только на их хорошо определенное подмножество (исходные файлы, листинги и др.), имеющее отношение к компиляции. С другой стороны, компилятор может иметь личные файлы, используемые для оптимизационных целей, к которым процесс Р не имеет доступа.

Различают дискреционный (избирательный) способ управления доступом и полномочный (мандатный).

При дискреционном доступе, подробно рассмотренном ниже, определенные операции над конкретным ресурсом запрещаются или разрешаются субъектам или группам субъектов. С концептуальной точки зрения текущее состояние прав доступа при дискреционном управлении описывается матрицей, в строках которой перечислены субъекты, в столбцах - объекты, а в ячейках - операции, которые субъект может выполнить над объектом.

Полномочный подход заключается в том, что все объекты могут иметь уровни секретности, а все субъекты делятся на группы, образующие иерархию в соответствии с уровнем допуска к информации. Иногда это называют моделью многоуровневой безопасности, которая должна обеспечивать выполнение следующих правил.

- Простое свойство секретности. Субъект может читать информацию только из объекта, уровень секретности которого не выше уровня секретности субъекта. Генерал читает документы лейтенанта, но не наоборот.

- *-свойство. Субъект может записывать информацию в объекты только своего уровня или более высоких уровней секретности. Генерал не может случайно разгласить нижним чинам секретную информацию.

Большинство операционных систем реализуют именно дискреционное управление доступом. Главное его достоинство - гибкость, основные недостатки - рассредоточенность управления и сложность централизованного контроля.

 

16.5. Домены безопасности

Чтобы рассмотреть схему дискреционного доступа более детально, введем концепцию домена безопасности (protection domain). Каждый домен определяет набор объектов и типов операций, которые могут производиться над каждым объектом. Возможность выполнять операции над объектом есть права доступа, каждое из которых есть упорядоченная пара <object-name, rights-set>. Домен, таким образом, есть набор прав доступа. Например, если домен D имеет права доступа <file F, {read, write }>, это означает, что процесс, выполняемый в домене D, может читать или писать в файл F, но не может выполнять других операций над этим объектом. Пример доменов можно увидеть на рис. 16.1.

Рис. 16.1. Специфицирование прав доступа к ресурсам

 

Связь конкретных субъектов, функционирующих в операционных системах, может быть организована следующим образом.

- Каждый пользователь может быть доменом. В этом случае набор объектов, к которым может быть организован доступ, зависит от идентификации пользователя.

- Каждый процесс может быть доменом. В этом случае набор доступных объектов определяется идентификацией процесса.

- Каждая процедура может быть доменом. В этом случае набор доступных объектов соответствует локальным переменным, определенным внутри процедуры. Заметим, что когда процедура выполнена, происходит смена домена.

Рассмотрим стандартную двухрежимную модель выполнения ОС. Когда процесс выполняется в режиме системы (kernel mode), он может выполнять привилегированные инструкции и иметь полный контроль над компьютерной системой. С другой стороны, если процесс выполняется в пользовательском режиме, он может вызывать только непривилегированные инструкции. Следовательно, он может выполняться только внутри предопределенного пространства памяти. Наличие этих двух режимов позволяет защитить ОС (kernel domain) от пользовательских процессов (выполняющихся в user domain). В мультипрограммных системах двух доменов недостаточно, так как появляется необходимость защиты пользователей друг от друга. Поэтому требуется более тщательно разработанная схема.

В ОС Unix домен связан с пользователем. Каждый пользователь обычно работает со своим набором объектов.

 

16.6. Матрица доступа

Модель безопасности, специфицированная в предыдущем разделе (рис. 16.1), имеет вид матрицы, которая называется матрицей доступа. Какова может быть эффективная реализация матрицы доступа? В общем случае она будет разреженной, то есть большинство ее клеток будут пустыми. Хотя существуют структуры данных для представления разреженной матрицы, они не слишком полезны для приложений, использующих возможности защиты. Поэтому на практике матрица доступа применяется редко. Эту матрицу можно разложить по столбцам, в результате чего получаются списки прав доступа (access control list - ACL). В результате разложения по строкам получаются мандаты возможностей (capability list или capability tickets).

 

16.7. Список прав доступа. Access control list

Каждая колонка в матрице может быть реализована как список доступа для одного объекта. Очевидно, что пустые клетки могут не учитываться. В результате для каждого объекта имеем список упорядоченных пар <domain, rights-set>, который определяет все домены с непустыми наборами прав для данного объекта.

Элементами списка могут быть процессы, пользователи или группы пользователей. При реализации широко применяется предоставление доступа по умолчанию для пользователей, права которых не указаны. Например, в Unix все субъекты-пользователи разделены на три группы (владелец, группа и остальные), и для членов каждой группы контролируются операции чтения, записи и исполнения (rwx). В итоге имеем ACL - 9-битный код, который является атрибутом разнообразных объектов Unix.

 

16.8. Мандаты возможностей. Capability list

Как отмечалось выше, если матрицу доступа хранить по строкам, то есть если каждый субъект хранит список объектов и для каждого объекта - список допустимых операций, то такой способ хранения называется "мандаты" или "перечни возможностей" (capability list). Каждый пользователь обладает несколькими мандатами и может иметь право передавать их другим. Мандаты могут быть рассеяны по системе и вследствие этого представлять большую угрозу для безопасности, чем списки контроля доступа. Их хранение должно быть тщательно продумано.

 

16.9. Другие способы контроля доступа

Иногда применяется комбинированный способ. Например, в том же Unix на этапе открытия файла происходит анализ ACL (операция open). В случае благоприятного исхода файл заносится в список открытых процессом файлов, и при последующих операциях чтения и записи проверки прав доступа не происходит. Список открытых файлов можно рассматривать как перечень возможностей.

Существует также схема lock-key, которая является компромиссом между списками прав доступа и перечнями возможностей. В этой схеме каждый объект имеет список уникальных битовых шаблонов (patterns), называемых locks. Аналогично каждый домен имеет список уникальных битовых шаблонов, называемых ключами (keys). Процесс, выполняющийся в домене, может получить доступ к объекту, только если домен имеет ключ, который соответствует одному из шаблонов объекта.

Как и в случае мандатов, список ключей для домена должен управляться ОС. Пользователям не разрешается проверять или модифицировать списки ключей (или шаблонов) непосредственно.

 

16.10. Смена домена

В большинстве ОС для определения домена применяются идентификаторы пользователей. Обычно переключение между доменами происходит, когда меняется пользователь. Но почти все системы нуждаются в дополнительных механизмах смены домена, которые используются, когда некая привилегированная возможность необходима большому количеству пользователей. Например, может понадобиться разрешить пользователям иметь доступ к сети, не заставляя их писать собственные сетевые программы. В таких случаях для процессов ОС Unix предусмотрена установка бита set-uid. В результате установки этого бита в сетевой программе она получает привилегии ее создателя (а не пользователя), заставляя домен меняться на время ее выполнения. Таким образом, рядовой пользователь может получить нужные привилегии для доступа к сети.

 

16.11. Недопустимость повторного использования объектов

Контроль повторного использования объекта предназначен для предотвращения попыток незаконного получения конфиденциальной информации, остатки которой могли сохраниться в некоторых объектах, ранее использовавшихся и освобожденных другим пользователем. Безопасность повторного применения должна гарантироваться для областей оперативной памяти (в частности, для буферов с образами экрана, расшифрованными паролями и т.п.), для дисковых блоков и магнитных носителей в целом. Очистка должна производиться путем записи маскирующей информации в объект при его освобождении (перераспределении). Например, для дисков на практике применяется способ двойной перезаписи освободившихся после удаления файлов блоков случайной битовой последовательностью.

 

16.12. Выявление вторжений. Аудит системы защиты

Даже самая лучшая система защиты рано или поздно будет взломана. Обнаружение попыток вторжения является важнейшей задачей системы защиты, поскольку ее решение позволяет минимизировать ущерб от взлома и собирать информацию о методах вторжения. Как правило, поведение взломщика отличается от поведения легального пользователя. Иногда эти различия можно выразить количественно, например, подсчитывая число некорректных вводов пароля во время регистрации.



<== предыдущая лекция | следующая лекция ==>
Способы предотвращения тупиков путем тщательного распределения ресурсов. Алгоритм банкира 11 страница | Способы предотвращения тупиков путем тщательного распределения ресурсов. Алгоритм банкира 13 страница


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.