русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

VLAN на базе меток – стандарт 802.1q


Дата добавления: 2013-12-23; просмотров: 5477; Нарушение авторских прав


Описанные два подхода основаны только на добавлении дополнительной информации к адресным таблицам коммутатора и не используют возможности встраивания информации о принадлежности кадра к виртуальной сети в передаваемый кадр. Метод организации VLAN на основе меток – тэгов, использует дополнительные поля кадра для хранения информации о принадлежности кадра при его перемещениях между коммутаторами сети.

Стандарт IEEE 802.1q определяет изменения в структуре кадра Ethernet, позволяющие передавать информацию о VLAN по сети.

С точки зрения удобства и гибкости настроек, VLAN на основе меток является лучшим решением, по сравнению с ранее описанными подходами. Его основные преимущества:

· Гибкость и удобство в настройке и изменении – можно создавать необходимые комбинации VLAN как в пределах одного коммутатора, так и во всей сети, построенной на коммутаторах с поддержкой стандарта 802.1q. Способность добавления меток позволяет VLAN распространяться через множество 802.1q-совместимых коммутаторов по одному физическому соединению.

· Позволяет активизировать алгоритм покрывающего дерева (Spanning Tree) на всех портах и работать в обычном режиме. Протокол Spanning Tree оказывается весьма полезным для применения в крупных сетях, построенных на нескольких коммутаторах, и позволяет коммутаторам автоматически определять древовидную конфигурацию связей в сети при произвольном соединении портов между собой. Для нормальной работы коммутатора требуется отсутствие замкнутых маршрутов в сети. Эти маршруты могут создаваться администратором специально для образования резервных связей или же возникать случайным образом, что вполне возможно, если сеть имеет многочисленные связи, а кабельная система плохо структурирована или документирована. С помощью протокола Spanning Tree коммутаторы после построения схемы сети блокируют избыточные маршруты, таким образом, автоматически предотвращается возникновение петель в сети.



· Способность VLAN 802.1q добавлять и извлекать метки из заголовков пакетов позволяет VLAN работать с коммутаторами и сетевыми адаптерами серверов и рабочих станций, которые не распознают метки.

· Устройства разных производителей, поддерживающие стандарт могут работать вместе, не зависимо от какого-либо фирменного решения.

· Не нужно применять маршрутизаторы. Чтобы связать подсети на сетевом уровне, достаточно включить нужные порты в несколько VLAN, что обеспечит возможность обмена трафиком. Например, для организации доступа к серверу из различных VLAN, нужно включить порт коммутатора, к которому подключен сервер, во все подсети. Единственное ограничение – сетевой адаптер сервера должен поддерживать стандарт IEEE 802.1q.

В силу указанных свойств, VLAN на базе тэгов используются на практике гораздо чаще других типов VLAN.

5.6. Алгоритм покрывающего дерева Spanning Tree

Один из методов, использующийся для повышения отказоустойчивости компьютерной сети, это Spanning Tree Protocol (STP)– протокол связующего дерева (IEEE 802.1d). Разработанный достаточно давно, в 1983 г., он до сих пор остается актуальным. В сетях Ethernet, коммутаторы поддерживают только древовидные связи, т.е. которые не содержат петель. Это означает, что для организации альтернативных каналов требуются особые протоколы и технологии, выходящие за рамки базовых, к которым относится Ethernet.

Если для обеспечения избыточности между коммутаторами создается несколько соединений, то могут возникнуть петли. Петля предполагает существование нескольких маршрутов по промежуточным сетям, а сеть с несколькими маршрутами между источником и приемником отличается повышенной устойчивостью к нарушениям. Хотя наличие избыточных каналов связи очень полезно, петли, тем не менее, создают проблемы, самые актуальные из которых:

· Широковещательные штормы – широковещательные кадры будут бесконечно передаваться по сетям с петлями, используя всю доступную полосу пропускания сети и блокируя передачу других кадров во всех сегментах.

· Множественные копии кадров - коммутатор может получить несколько копий одного кадра, одновременно приходящих из нескольких участков сети. В этом случае таблица коммутации не сможет определить расположение устройства, потому что коммутатор будет получать кадр на несколько портов. Может случиться так, что коммутатор вообще не сможет переслать кадр, т.к. будет постоянно обновлять таблицу коммутации.

Для решения этих проблем и был разработан протокол связующего дерева.

Алгоритм Spanning Tree (STA) позволяет коммутаторам автоматически определять древовидную конфигурацию связей в сети при произвольном соединении портов между собой.

Коммутаторы, поддерживающие протокол STP автоматически создают древовидную конфигурацию связей без петель в компьютерной сети. Такая конфигурация называется покрывающим деревом - Spanning Tree (иногда ее называют остовым деревом). Конфигурация покрывающего дерева строится коммутаторами автоматически с использованием обмена служебными пакетами.

Вычисление связующего дерева происходит при включении коммутатора и при изменении топологии. Эти вычисления требуют периодического обмена информацией между коммутаторами связующего дерева, что достигается при помощи специальных пакетов, называемых блоками данных протокола моста – BPDU (Bridge Protocol Data Unit).

Пакеты BPDU содержат основную информацию, необходимую для построения топологии сети без петель:

· Идентификатор коммутатора, на основании которого выбирается корневой коммутатор

· Расстояние от коммутатора-источника до корневого коммутатора (стоимость корневого маршрута)

· Идентификатор порта

Пакеты BPDU помещаются в поле данных кадров канального уровня, например, кадров Ethernet. Коммутаторы обмениваются BPDU через равные интервалы времени (обычно 1-4с). В случае отказа коммутатора (что приводит к изменению топологии) соседние коммутаторы, не получив пакет BPDU в течение заданного времени, начинают пересчет связующего дерева.

Современные коммутаторы также поддерживают протокол Rapid STP (IEEE 802.1w), который обладает лучшим временем сходимости по сравнению с STP (меньше 1 секунды). 802.1w обратно совместим с 802.1d.

Сравнение протоколов STP 802.1d и RSTP 802.1w.

Протокол Показатель STP 802.1d RSTP 802.1w
Время сходимости до 30 сек до 5 сек
Диаметр сети 7 переходов 18 переходов (37 для топологии кольцо)
Совместимость - обратно совместим с STP 802.1d

5.7. Агрегирование портов и создание высокоскоростных сетевых магистралей

Агрегирование портов (Port Trunking)- это объединение нескольких физических каналов (Link Aggregation) в одну логическую магистраль. Используется для объединения вместе нескольких физических портов с целью образования высокоскоростного канала передачи данных и позволяет активно задействовать избыточные альтернативные связи в локальных сетях.

В отличие от протокола STP (Spanning Tree – протокол покрывающего дерева), при агрегировании физических каналов все избыточные связи остаются в рабочем состоянии, а имеющийся трафик распределяется между ними для достижения баланса нагрузки. При отказе одной из линий, входящих в такой логический канал, трафик распределяется между оставшимися линиями.

Включенные в агрегированный канал порты называются членами группы. Один из портов в группе выступает в качестве «связывающего». Поскольку все члены группы в агрегированном канале должны быть настроены для работы в одинаковом режиме, все изменения настроек, произведенные по отношению к «связывающему» порту, относятся ко всем членам группы. Таким образом, для настройки портов в группе необходимо только настроить «связывающий» порт.

Важным моментом при реализации объединения портов в агрегированный канал является распределение трафика по ним. Если пакеты одного сеанса будут передаваться по разным портам агрегированного канала, то может возникнуть проблема на более высоком уровне протокола OSI. Например, если два или более смежных кадров одного сеанса станут передаваться через разные порты агрегированного канала, то из-за неодинаковой длины очередей в их буферах может возникнуть ситуация, когда из-за неравномерной задержки передачи кадра, более поздний кадр обгонит своего предшественника. Поэтому в большинстве реализаций механизмов агрегирования используются методы статического, а не динамического распределения кадров по портам, т.е. закрепление за определенным портом агрегированного канала потока кадров определенного сеанса между двумя узлами. В этом случае все кадры будут проходить через одну и ту же очередь и их последовательность не изменится. Обычно при статическом распределении выбор порта для конкретного сеанса выполняется на основе выбранного алгоритма агрегирования портов, т.е. на основании некоторых признаков поступающих пакетов. В зависимости от используемой для идентификации сеанса информации существуют 6 алгоритмов агрегирования портов:

1. МАС-адрес источника;

2. МАС-адрес назначения;

3. МАС-адрес источника и назначения;

4. IP-адрес источника;

5. IP-адрес назначения;

6. IP-адрес источника и назначения.

Агрегированные линии связи можно организовать с любым другим коммутатором, поддерживающим потоки данных точка-точка по одному порту агрегированного канала.

Объединение каналов следует рассматривать как вариант настройки сети, используемый преимущественно для соединений «коммутатор-коммутатор» или «коммутатор – файл-сервер», требующих более высоких скорости передачи, чем может обеспечить одиночная линия связи. Также эту функцию можно применять для повышения надежности важных линий. В случае повреждения линии связи объединенный канал быстро перенастраивается (не более чем за 1 с), а риск дублирования и изменения порядка кадров незначителен.

Программное обеспечение современных коммутаторов поддерживает два типа агрегирования каналов связи: статическое и динамическое. При статическом агрегировании каналов все настройки на коммутаторах выполняются вручную. Динамическое агрегирование каналов основано на спецификации IEEE 802.3ad, которая использует протокол контроля агрегированных линий связи LACP (Link Aggregation Control Protocol) для того, чтобы проверять конфигурацию каналов и направлять пакеты в каждую из физических линий. Кроме этого, протокол LACP описывает механизм добавления и изъятия каналов из единой линии связи. Для этого, при настройке на коммутаторах агрегированного канала связи, соответствующие порты одного коммутатора должны быть сконфигурированы как «активные», а другого коммутатора как «пассивные». «Активные» порты LACP выполняют обработку и рассылку его управляющих кадров. Это позволяет устройствам, поддерживающим LACP, договориться о настройках агрегированного канала и иметь возможность динамически изменять группу портов, т.е. добавлять или исключать из нее порты. «Пассивные» порты обработки управляющих кадров LACP не выполняют.

Стандарт IEEE 802.3ad применим для всех типов Ethernet-каналов, и с его помощью можно строить даже мультигигабитные линии связи, состоящие из нескольких каналов Gigabit Ethernet.

5.8. Обеспечение качества обслуживания (QoS)

Приоритетная обработка кадров (802.1р)

Построение сетей на основе коммутаторов позволяет использовать приоритезацию трафика, причем делать это независимо от технологии сети. Эта возможность является следствием того, что коммутаторы буферизуют кадры перед их отправкой на другой порт.


Коммутатор обычно ведет для каждого входного и выходного порта не одну, а несколько очередей, причем каждая очередь имеет свой приоритет обработки. При этом коммутатор может быть сконфигурирован, например, так, чтобы передавать один низкоприоритетный пакет на каждые 10 высокоприоритетных пакетов.

Поддержка приоритетной обработки может особенно пригодиться для приложений, предъявляющих различные требования к допустимым задержкам кадров и к пропускной способности сети для потока кадров.

Способность сети обеспечивать различные уровни обслуживания, запрашиваемые теми или иными сетевыми приложениями, может быть классифицирована по трем различным категориям:

· Негарантированная доставка данных (best effort service). Обеспечение связности узлов сети без гарантии времени и самого факта доставки пакетов в точку назначения. На самом деле негарантированная доставка не является частью QoS, поскольку отсутствует гарантия качества обслуживания и гарантия доставки пакетов.

· Дифференцированное обслуживание (differentiated service). Дифференцированное обслуживание предполагает разделение трафика на классы на основе требований к качеству обслуживания. Каждый класс трафика дифференцируется и обрабатывается сетью в соответствии с заданными для этого класса механизмами QoS (быстрее обрабатывается, выше средняя полоса пропускания, ниже средний уровень потерь). Подобная схема обеспечения качества обслуживания часто называется схемой CoS (Class of Service). Дифференцированное обслуживание само по себе не предполагает обеспечение гарантий предоставляемых услуг. В соответствии с этой схемой трафик распределяется по классам, каждый из которых имеет собственный приоритет. Этот тип обслуживания удобно применять в сетях с интенсивным трафиком. В этом случае важно обеспечить отделение административного трафика сети от всего остального и назначить ему приоритет, позволяющий в любой момент времени быть уверенным в связности узлов сети.

· Гарантированное обслуживание (guaranteed service). Гарантированное обслуживание предполагает резервирование сетевых ресурсов с целью удовлетворения специфических требований к обслуживанию со стороны потоков трафика. В соответствии с гарантированным обслуживанием выполняется предварительное резервирование сетевых ресурсов по всей траектории движения трафика. Например, такие схемы используются в технологиях глобальных сетей Frame Relay и ATM или в протоколе RSVP для сетей TCP/IP. Однако для коммутаторов такого рода протоколов нет, так что гарантий качества обслуживания они пока дать не могут.

Основным вопросом при приоритетной обработке кадров коммутаторами является вопрос назначения кадру приоритета. Так как не все протоколы канального уровня поддерживают поле приоритета кадра, например, у кадров Ethernet оно отсутствует, то коммутатор должен использовать какой-либо дополнительный механизм для связывания кадра с его приоритетом. Наиболее распространенный способ - приписывание приоритета портам коммутатора. При этом способе коммутатор помещает кадр в очередь кадров соответствующего приоритета в зависимости от того, через какой порт поступил кадр в коммутатор. Способ несложный, но недостаточно гибкий - если к порту коммутатора подключен не отдельный узел, а сегмент, то все узлы сегмента получают одинаковый приоритет.

Более гибким является назначение приоритетов кадрам в соответствии со стандартом IEEE 802.1р. Этот стандарт разрабатывался совместно со стандартом 802.1q. В обоих стандартах предусмотрен общий дополнительный заголовок для кадров Ethernet, состоящий из двух байт. В этом дополнительном заголовке, который вставляется перед полем данных кадра, 3 бита используются для указания приоритета кадра. Существует протокол, по которому конечный узел может запросить у коммутатора один из восьми уровней приоритета кадра. Если сетевой адаптер не поддерживает стандарт 802.1p, то коммутатор может назначать приоритеты кадрам на основе порта поступления кадра. Такие помеченные кадры будут обслуживаться в соответствии с их приоритетом всеми коммутаторами сети, а не только тем коммутатором, который непосредственно принял кадр от конечного узла. При передаче кадра сетевому адаптеру, не поддерживающему стандарт 802.1p, дополнительный заголовок должен быть удален.

Коммутаторы обеспечивают дифференцированное обслуживание, поэтому необходима идентификация пакетов, которая позволит отнести их к соответствующему классу трафика CoS, включающему, как правило, пакеты из разных потоков. Указанная задача выполняется путем классификации.

Классификация пакетов (packet classification) представляет собой средство, позволяющее отнести пакет к тому или иному классу трафика в зависимости от значений одного или нескольких полей пакета.

В управляемых коммутаторах используются различные способы классификации пакетов. Ниже перечислены параметры, на основании которых пакет идентифицируется:

· Биты класса приоритета 802.1p;

· Поля байта TOS, расположенного в заголовке IP-пакета и поле кода дифференцированной услуги (DSCP);

· Адрес назначения и источника IP-пакета;

· Номера портов TCP/UDP.

Поскольку высокоприоритетные пакеты должны обрабатываться раньше низкоприоритетных, в коммутаторах поддерживается несколько очередей приоритетов CoS. Кадры, в соответствии со своим приоритетом, могут быть помещены в разные очереди. Для обработки очередей приоритетов могут использоваться различные механизмы обслуживания:

· строгая очередь приоритетов (Strict Priority Queuing, SPQ);

· взвешенный циклический алгоритм (Weighted Round Robin, WRR).

В первом случае (алгоритм SPQ), пакеты, находящиеся в самой приоритетной очереди начинают передаваться первыми. При этом пока более приоритетная очередь не опустеет, пакеты из менее приоритетных очередей передаваться не будут. Второй алгоритм (WRR) устраняет это ограничение, а также исключает нехватку полосы пропускания для очередей с низким приоритетом. В этом случае для каждой очереди приоритетов задается максимальное количество пакетов, которое может быть передано за один раз и максимальное время ожидания, через которое очередь снова сможет передавать пакеты. Диапазон передаваемых пакетов: от 0 до 255. Диапазон времени оживания: от 0 до 255.

5.9. Ограничение доступа к сети



<== предыдущая лекция | следующая лекция ==>
VLAN на базе MAC-адресов | Протокол IEEE 802.1x


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.