Как известно, любая электромагнитная волна имеет две составляющие магнитную и электрическую. В волноводе полупроводникового лазера могут распространяться два типа электромагнитных колебаний ТЕ и ТМ. ТЕ моды имеют вектор электрического поля направленный параллельно эпитаксиальным слоям. ТМ-моды имеют вектор электрического поля направленный перпендикулярно эпитаксиальным слоям.
Рассмотрим волновод полупроводникового лазера на основе двойной гетероструктуры раздельного ограничения. (Такой волновод подходит под определение диэлектрического волновода и для него подходят все расчеты и выводы сделанные согласно теории диэлектрических волноводов.)
При выполнении всех четырех условий создается полупроводниковый лазер
Рис. 50. Схематическое изображение полупроводникового лазера; инжекция электронов и дырок создает неравновесные носители заряда и начинается спонтанная рекомбинация, дальнейшее увеличение инжекции (тока) приводит к выполнению условия инверсной заселенности, волновод образован скачками показателя преломления между волноводом и эмиттером, обратная связь создана сколами и нанесенными на них дэлектрическими зеркалами, дальнейшее увеличение тока накачки приводит к просветлению активной области(компенсации поглощения материалом активной области), дальнейшее увеличение тока накачки приводит к компенсации всех внутренних потерь и наступает генерация стимулированного излучения (когерентного, вынужденного).
Рис. 51. Изображение многомодового (с широким полосковым контактом) полупроводникового лазеры в конструктивном исполнении мелкой мезы. Ширина полоскового контакта 100 – 200 мкм, длина резонатора 1-2 миллиметра, ширина активного элемента 500 мкм и высота лазерного кристалла с подложкой и эпитаксиальными слоями 120 мкм.
На вставке изображены эпитаксиальные слои составляющие современную лазерную структуру: активную область, волноводные слои легированные р- и n-типа, и эмиттерные слои р- и n-типа. Их суммарная толщина составляет 5 мкм. Схематично изображены характеристики лазерного излучения.
Рис. 52. Последовательность постростовых технологических операций при формировании конструкции полоскового лазера мелкая меза. а – формирование мезы ограничивающей полосок через который протекает ток накачки, в – формирование диэлектрической изоляции пассивных областей полоскового лазера и с – формирование металлического омического контакта.
Лекция № 6. Волновод полупроводникового лазера и его свойства.
Рис.53. Схематическое изображение полупроводникового лазера и оптического волновода.
Рис. 54. Приведено изображение волновода и понятия угла полного внутреннего отражения ΘTR. В зависимости от соотношения n1 и n2 волновод выбирает излучение, распространяющееся по волноводному слою под углами большими угла полного внутреннего отражения.
Рис. 55. Приведена зависимость показателя преломления(nr ) и предельного волноводного угла (90 - ΘTR) волновода AlxGa1-x As/GaAs от содержания Al. Эта зависимость иллюстрирует практическую возможность создания эффективного волновода в системе твердых растворов AlxGa1-x As.
6.2. В резонаторе полупроводникового лазера распространяется излучение определенной конфигурации удовлетворяющей только этому резонатору. Такие типы колебаний называются модами электромагнитного излучения. Электромагнитное излучение, удовлетворяющее оптическому резонатору в котором распространяется, называется оптической модой резонатора. Обычно под профилем оптической моды резонатора:
I(x, y, z) (42)
понимают пространственное распределение квадрата модуля вектора напряженности электрического поля электромагнитной волны :
E2(x, y, z) (43)
Ниже приведен рис.56 который иллюстрирует все типы мод полупроводникового лазера. Оптические моды в резонаторе обозначают с помощью трех индексов hkl, характеризующих сколько раз интенсивность моды обращается в ноль в данном направлении (z, y, x).
В простой аппроксимации профиль I hkl(x, y, z) некоторой оптической моды hkl лазерной структуры может быть записан как произведение трех пространственных профилей вдоль вертикального, латерального и продольного направлений:
I hkl (x, y, z) = I h(z) I k( y) I l(x) (44)
Соответственно, говорят о вертикальной моде h с пространственным профилем Ih(z), латеральной моде k с пространственным профилем Ik(y) и продольной моде l с пространственным профилем Il(x).
Мы сейчас рассматриваем вертикальные h моды волновода полупроводникового лазера на основе двойной гетероструктуры. С увеличением толщины волновода при постоянных показателях преломления число вертикальных мод увеличивается.
В полупроводниковом лазере представляет интерес генерация на основной нулевой моде Ih(z), для которойh=0.
Математически распределение интенсивности электромагнитного излучения внутри волновода описывается синусоидальной функцией, а вне волновода экспоненциальной.
Рис.57. Распределение интенсивности излучения нулевой (сплошная) и второй (пунктир) вертикальной мод в волноводе двойной гетероструктуры.
Рис.58. Распределение интенсивности излучения нулевой вертикальной моды в волноводе двойной гетероструктуры различной толщины. Увеличение толщины волновода и показателя преломления снижает долю излучения, распространяющуюся по волноводу.
Alx, %
Рис. 59 Зависимость толщины волновода двойной лазерной гетероструктуры соответствующей отсечке нулевой моды для различной концентрации алюминия в волноводных слоях.
Зависимость имеет огромное практическое значение. Позволяет определить максимальную толщину волновода выбранного состава удерживающего только основную, нулевую вертикальную моду.
Рис.60. Электромагнитная стоячая волна и ее электрическая и магнитная составляющие.
Вектор электрического поля определяет поляризацию лазерного излучения. Очень часто можно слышать определение: лазерное излучение имеет ТЕ или ТМ поляризацию. Для полупроводникового лазера это означает, что вектор электрического поля параллелен эпитаксиальным слоям (ТЕ-мода) или вектор электрического поля перпендикулярен эпитаксиальным слоям лазерной структуры (ТМ-мода). Поляризация лазерного излучения имеет огромное значение, поскольку излучение ТЕ и ТМ моды имеет сильно отличающийся коэффициент отражения от зеркала образующего резонатор Фабри-Перо полупроводникового лазера, на рис. 61 изображена такая зависимость.
Рис.61. Зависимость коэффициента отражения от скола образующего зеркало резонатора Фабри-Перо от толщины вертикального волновода.
Из этой зависимости следует, что потери на выход для ТМ –мод всегда выше чем для ТЕ-мод. Поэтому в полупроводниковых лазерах с резонатором Фабри-Перо при разумных толщинах вертикального волновода пороговый ток для излучения ТЕ-мод будет всегда ниже порогового ока для излучения с ТМ – модовой поляризацией.
Рис.62. Зависимость потерь на выход для вертикальных мод ТЕ и ТМ поляризации от толщины вертикального волновода двойной гетероструктуры.
Не менее важным является то, что для ТЕ-мод абсолютный минимум величины ln(1/R) (потери на выход) убывает с увеличением номера моды. Поэтому при достаточно большой ширине вертикального волновода может оказаться, что пороговая плотность тока для моды более высокого порядка меньше, чем для фундаментальной моды даже с учетом меньшего фактора оптического ограничения. Это приводит к тому, что вертикальный волновод теряет одномодовый режим генерации и становится многомодовым.
Лекция № 7. Полупроводниковые гетеропереходы. Ток через р-п гетеропереход. Зонная структура двойной гетероструктуры (ДГС).
Гетеропереход формируется двумя полупроводниками различающимися типом проводимости (p и n), шириной запрещенной зоны (Eg), показателем преломления ( n ), иногда параметр решетки ( a ) совпадает и тогда возникает изопериодический p-n - гетеропереход, в случае несовпадения параметра решетки (a) возникает упруго напряженный p-n гетеропереход.
Гетеропереходы подразделяются на два типа: Ι рода и ΙΙ рода. В гетеропереходе Ι рода разрывы в зонах имеют противоположный знак. В гетеропереходе ΙI рода разрывы в зонах имеют однотипный знак.