русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Тема 2.2 Методологии описания предметной области


Дата добавления: 2013-12-24; просмотров: 6641; Нарушение авторских прав


Бизнес-моделирование может быть реализовано с помощью различных методик, отличающихся подходами к моделированию организации. В соответствии с различными представлениями об организации. В соответствии с различными представлениями об организации принято различать методики объектные и функциональные (структурные).

Сущность функционального подхода к моделированию бизнес-процессов к построению схемы технологического процесса в виде последовательности операций, на входе и выходе которых отражаются объекты различной природы: материальные и информационные объекты, используемые ресурсы, организационные единицы.

Достоинство функционального подхода заключается в наглядности и понятности представления бизнес-процессов на различных уровнях абстракции, что особенно важно на стадии внедрения разработанных бизнес-процессов в подразделениях предприятия. Существенным недостатком функционального подхода является некоторая субъективность детализации операций и, как следствие, большая трудоемкость в адекватном построении бизнес-процессов.

Объектно-ориентированный подход предполагает выделение классов объектов и определение действий, в которых участвуют объекты. При этом различают пассивные объекты (материалы, документы, оборудование), над которыми выполняются действия, и активные объекты (организационные единицы, конкретные исполнители, информационные подсистемы), которые совершают эти действия.

Такой подход позволяет выделять операции над объектами и решать задачи целесообразности существования самих объектов.

Недостаток объектно-ориентированного подхода заключается в меньшей наглядности конкретных процессов для лиц, принимающих решения. Вместе с тем выявленные операции в дальнейшем могут быть представлены для наглядности в виде функциональных диаграмм.

В настоящее время для проведения моделирования деловых и информационных процессов разработаны различные методологии и соответствующие инструментальные средства, большинство из которых имеют узкую направленность применения.



Методологии функционального моделирования (диаграммы потоков данных, структурные диаграммы процессов) ориентированы на отображение последовательности функций. При их использовании трудно определить конкретные альтернативы процессов, не видна схема взаимодействия объектов. Объектные модели, наоборот, отражают только обобщенную схему взаимодействия объектов без детализации последовательности выполнения функций. Методологии объектно-ориентированного подхода отражают объекты, функции и события, при которых объекты инициируют выполнение конкретных процессов; при этом теряется общая наглядность модели.

 

Функциональное моделирование бизнес-процессов с использованием стандарта IDEFO

 

Методология IDEF0 является развитием хорошо известного графического языка описания функциональных систем SADT (Structured Analysis and Design Teqnique).

IDEFO как стандарт был разработан в 1981 г. в рамках обширной программы автоматизации промышленных предприятий Integrated Computer Aided Manufacturing (ICAM) предложенной департаментом военно-воздушных сил США. Семейство стандартов унаследовало свое обозначение от названия этой программы — ICAM DEFinition — IDEF. В процессе практической реализации участники программы ICAM столкнулись с необходимостью разработки новых методов анализа процессов взаимодействия в промышленных системах. При этом, кроме усовершенствованного набора функций для описания бизнес-процессов, одним из требований к новому стандарту было наличие эффективной методологии взаимодействия в рамках «аналитик — специалист». Другими словами, новый метод должен был обеспечить групповую работу над созданием модели с непосредственным участием всех аналитиков и специалистов, занятых в рамках проекта.

Со времени появления стандарт IDEFO претерпел несколько незначительных изменений, в основном, ограничивающего характера; последняя его редакция была выпущена в декабре 1993 г. Национальным институтом по стандартам и технологиям США (NIST).

Графический язык IDEFO прост и гармоничен. В основе методологии лежат четыре основных понятия, первым из которых является понятие функционального блока (Activity Box). Функциональный блок графически изображается в виде прямоугольника (рис. 2.7) и представляет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, «производить услуги», а не «производство услуг»).

Каждая из четырех сторон функционального блока имеет свое определенное значение (играет свою роль):

 
 

верхняя сторона имеет значение «Управление» (Control);

Рис.2.7. Функциональный блок

• левая сторона имеет значение «Вход» (Input); правая сторона имеет значение «Выход» (Output);

• нижняя сторона имеет значение «Механизм» (Mechanism).

Каждый функциональный блок в рамках единой рассматриваемой системы должен иметь свой уникальный идентификационный номер.

Второе основное понятие методологии IDEF0 — интерфейсная дуга (Arrow). Интерфейсные дуги также называют потоками или стрелками. Интерфейсная дуга отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, отображенную данным функциональным блоком.

Графическим отображением интерфейсной дуги является однонаправленная стрелка. Каждая интерфейсная дуга должна иметь свое уникальное наименование (Arrow Label). По требованию стандарта, наименование должно быть оборотом существительного.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т. д.) или потоки данных и информации (документы, данные, инструкции и т. д.).

Интерфейсные дуги бывают «входящими», «исходящими» и «управляющими» в зависимости от стороны блока, к которой они подходят.

«Источником» (началом) и «приемником» (концом) функциональной дуги могут быть только функциональные блоки. При этом «источником» может быть только выходная сторона блока, а «приемником» — любая из трех остальных.

Каждый функциональный блок должен иметь, по крайней мере, одну управляющую интерфейсную дугу (т. е. каждый процесс протекает по каким-то правилам) и одну исходящую (выдача некоторого результата).

При построении диаграмм по стандарту ЮЕРО необходимо правильно разделять входящие и управляющие интерфейсные дуги, что не всегда просто.

 
 

На рис. 2.8 приведен пример диаграммы, изображающий функциональный блок «Обработать заготовку». Для получения детали рабочему выдают заготовку и технологические указания. Неверно считать, что технологические указания (какой-то документ или документы) и заготовка являются входящими объектами. На самом деле в этом процессе заготовка обрабатывается по правилам, отраженным в технологических указаниях, которые должны изображаться управляющей интерфейсной дугой.

Рис.2.9.Функциональный блок «Корректировать технологические указания»

Другой пример приведен на рис. 2.9, где описывается процесс обработки и изменения главным технологом технологических указаний. Здесь технологические указания отображаются входящей интерфейсной дугой, а управляющим объектом являются, например, новые промышленные стандарты, учитывая которые производятся изменения.

Теперь понятно, что входящие и управляющие интерфейсные дуги имеют схожую природу. Тем не менее для систем одного класса всегда есть определенные разграничения. Так, например, в случае рассмотрения предприятий и организаций существуют пять основных видов объектов:

• материальные потоки (детали, товары, сырье и т. д.);

• финансовые потоки (наличные и безналичные, инвестиции и т. д.);

• потоки документов (коммерческие, финансовые и организационные);

• потоки информации (информация, данные о намерениях, устные распоряжения и т. д.);

• ресурсы (сотрудники, станки, машины и т. д.).

При этом в разных случаях входящими и исходящими интерфейсными дугами могут отображаться все виды объектов, управляющими — только относящиеся к потокам документов и информации, а дугами-механизмами — только ресурсы.

Одно из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram) — обязательное наличие управляющих интерфейсных дуг.

Третье основное понятие стандарта IDEF0 — это декомпозиция (Decomposition). Декомпозиция применяется при разбиении сложного процесса на составляющие его функции. При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Декомпозиция дает возможность представлять модель системы в виде иерархической структуры отдельных диаграмм. Это делает диаграммы менее перегруженными и легко читаемыми.

Модель IDEF0 всегда начинается с представления системы как единого целого — одного функционального блока с интерфейсными дугами, входящими и выходящими за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой и обозначается идентификатором «АО». В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки модели IDEF0 — важнейшие аспекты функционального моделирования. Цель, прежде всего, определяет первоочередные области исследования. Так, моделирование деятельности одного и того же предприятия с целью разработки АИС или, например, оптимизации логистических цепочек даст в результате различные модели.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации. Четкая фиксация точки зрения позволяет разгрузить модель, отказаться от детализации и исследования второстепенных элементов для разрабатываемой АИС. Например, функциональные модели одного и того же предприятия, построенные главным технологом и финансовым директором, будут существенно различаться по направленности их детализации. Финансового директора в меньшей степе-пи интересуют аспекты обработки сырья на производственных станках, а главному технологу не нужны детализированные схемы финансовых потоков. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

В процессе декомпозиции функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме.

Диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы, и называется дочерней (Child diagram) по отношению к нему. Каждый из функциональных блоков, принадлежащих дочерней диаграмме, соответственно называется дочерним блоком — Child Box.

В свою очередь, функциональный блок «предок» называется родительским блоком (Parent Box) по отношению к дочерней диаграмме, а диаграмма, к которой он принадлежит, — родительской диаграммой (Parent Diagram).

Каждая из подфункций дочерней диаграммы может затем детализироваться с помощью аналогичной декомпозиции соответствующего ей функционального блока. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEFO-модели. Наглядно принцип декомпозиции представлен на рис. 2.10. Следует обратить внимание на взаимосвязь нумерации функциональных блоков и диаграмм — каждый блок имеет свой уникальный порядковый номер на диаграмме (цифра в правом нижнем углу прямоугольника), а обозначение под ним указывает на номер дочерней для этого блока диаграммы. Отсутствие этого обозначения говорит о том, что декомпозиция для данного блока не существует.

 
 

Рис.2.10. Декомпозиция функциональных блоков

 

Возможны ситуации, когда отдельные интерфейсные дуги нет смысла рассматривать в дочерних диаграммах ниже какого-то определенного уровня в иерархии, или наоборот, отдельные дуги не имеют практического смысла выше какого-то уровня. Например, интерфейсную дугу, изображающую «деталь» на входе функционального блока «Обработать на токарном станке», не имеет смысла отражать на диаграммах более высоких уровней — это будет только перегружать диаграммы и делать их сложными для восприятия. С другой стороны, бывает необходимо избавиться от отдельных «концептуальных» интерфейсных дуг и не детализировать их глубже некоторого уровня.

Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение «туннеля» (Arrow Tunnel) в виде двух круглых скобок у начала интерфейсной дуги означает, что эта дуга не была унаследована от функционального родительского блока и появилась (из «туннеля») только на этой диаграмме. В свою очередь, такое же обозначение у конца (стрелки) интерфейсной дуги рядом с блоком-приемником означает, что в дочерней по отношению к этому блоку диаграмме эта дуга не будет отображаться и рассматриваться. Чаще всего отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии, т. е. они сначала «погружаются в туннель», а затем при необходимости «возвращаются из туннеля».

Четвертое базовое понятие стандарта IDEF0 — глоссарий (Glossary). Для каждого из элементов IDEF0 (диаграмм, функциональных блоков, интерфейсных дуг) существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений п т. д., которые характеризуют объект, отображенный данным элементом. Такой набор называется глоссарием и является описанием сущности данного элемента. Например, для управляющей интерфейсной дуги «распоряжение об оплате» глоссарий может содержать перечень полей соответствующего дуге документа, необходимый набор виз и т. д. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой поясняющей информацией. Обычно IDEFO-модели несут в себе сложную и концентрированную информацию, и для того, чтобы не перегружать их и сделать удобочитаемыми, в соответствующем стандарте приняты следующие принципиальные ограничения сложности:

• ограничение числа функциональных блоков на диаграмме тремя и шестью. Верхний предел (шесть) заставляет разработчика использовать иерархии при описании сложных предметов, а нижний предел (три) гарантирует, что на соответствующей диаграмме достаточно деталей, чтобы оправдать ее создание;

• ограничение числа подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг четырьмя.

Следовать этим ограничениям необязательно, однако их использование весьма целесообразно в практической работе.

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большим коллективом специалистов — профессионалов в разных областях деятельности. Обычно процесс разработки является итерационным и состоит из следующих условных этапов.

1.Создание модели группой специалистов из разных сфер деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов. На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

2.Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждении черновика модели с широким спектром компетентных лиц (и терминах IDEF0 — читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ем с изложением логики принятия решения и вновь возвращает откорректированный черновик на дальнейшее рассмотрение. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.

3.Официальное утверждение модели. Утверждение согласо-1лнной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, не принимавших участия в ее создании, эффективной для проведения показов и презентаций. В дальнейшем, на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений на Предприятии (в системе)

 

Моделирование потоков данных (процессов) — DFD

 

Диаграммы потоков данных — основные средства моделирования функциональных требований проектируемой системы.

С их помощью эти требования разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель таких средств — продемонстрировать, как каждый процесс преобразует свои входные данное в выходные, а также выявить отношения между этими провесами .

 

 

 

 

В соответствии с методологией модель системы определялся как иерархия диаграмм потоков данных (DFD — Data I low Diagram), описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи пользователю. Диаграммы верхних уровней иерархии (контекстные та граммы) определяют основные процессы или подсистемы ШС с внешними входами и выходами. Они детализируются с юмощью диаграмм нижнего уровня. Декомпозиция, создавая многоуровневую иерархию диаграмм, продолжается до тех пир, пока не будет достигнут такой уровень, на котором процессы становятся элементарными и детализировать их далее невозможно.

При построении DFD можно использовать различные нотации (табл. 2.1). Эти нотации незначительно отличаются друг от дуга графическим изображением символов.

Для построения БРО используются следующие понятия.

Потоки данных — механизмы, которые отображают передачу информации от одного процесса другому. На схеме они обычно изображаются направленной стрелкой, которая показывает направление движения информации или материалов (если рассматриваются материальные потоки).

Информация может двигаться в одном направлении, обрабатываться и возвращаться назад, в источник. Такая ситуация может моделироваться либо двумя различными потоками, либо одним — двунаправленным.

Процесс преобразует значения данных. Назначение процесса — генерация выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Это имя должно содержать глагол в неопределенной форме с последующим дополнением (например, «вычислить максимальную высоту»). Каждый процесс должен иметь уникальный номер для ссылок на пего внутри диаграммы. Этот номер может использоваться со-нместно с номером диаграммы для получения уникального индекса процесса во всей модели.

Хранилище (накопитель) данных — пассивный объект в составе ОРЭ, в котором данные сохраняются для последующего доступа. Такой объект позволяет на определенных участках определять данные, которые будут сохраняться в памяти между процессами [10].

Фактически хранилище представляет «срезы» потоков дан-пых во времени. Информация, которую оно содержит, может использоваться в любое время после ее определения, при этом данные могут выбираться в любом порядке. Имя хранилища должно идентифицировать его содержимое и быть существительным. В случае, когда поток данных входит или выходит в/из хранилища и его структура соответствует структуре хранилища, ОН должен иметь то же самое имя, которое нет необходимости отражать на диаграмме.

Внешняя сущность (источник/приемник информации) — сущность вне контекста системы, являющаяся источником или приемником системных данных. Ее имя должно содержать существительное, например, «склад». Предполагается, что объекты, представленные такими узлами, не должны участвовать ни в какой обработке.

Декомпозиция БРО осуществляется на основе процессов: каждый процесс может раскрываться с помощью БРО нижнего уровня [10].

Важную специфическую роль в модели играет специальный вид ОРБ — контекстная диаграмма, моделирующая систему наиболее общим образом. Контекстная диаграмма отражает взаимодействие системы с внешним миром, а именно, информационные потоки между системой и внешними сущностями, с которыми она должна быть связана. Она идентифицирует эти внешние сущности и, как правило, единственный процесс, отражающий главную цель или природу системы, насколько это возможно. Каждый проект должен иметь только одну контекстную диаграмму, при этом нет необходимости в нумерации ее единственного процесса.

 
 

Диаграмма первого уровня строится как декомпозиция процесса, который присутствует на контекстной диаграмме. Построенная диаграмма первого уровня также имеет множества процессов, которые в свою очередь могу быть декомпозированы1 в диаграмму нижнего уровня. Таким образом строится иерархия, ОРЭ с контекстной диаграммой в корне дерева. Декомпозиция продолжается до тех пор, пока процессы эффективно описываются с помощью коротких (до одной страницы) мини-спецификаций обработки (спецификаций процессов).

При таком построении иерархии DFD каждый процесс более; низкого уровня необходимо соотнести с процессом верхнего, уровня. Обычно для этой цели используются структурированные номера процессов. Например, если детализируется процесс номер 2 на диаграмме первого уровня, раскрывая его с помощью ОРО, содержащей три процесса, то их номера будут иметь слtдующую нумерацию: 2.1, 2.2 и 2.3. При необходимости можно перейти на следующий уровень, т. е. для процесса 2.2 получим 2.2.1, 2.2.2 и т. д.

Потоки могут группироваться с помощью введения нового потока. Такой поток называется потоком-предком или групповым потоком и состоит из потоков-потомков.

Обратная операция (расщепление потоков на подпотоки) осуществляется с использованием группового узла (рис. 2.11). Поток может быть расщеплен на любое число подпотоков. При расщеплении подпотоки также должны быть формально определены в словаре данных.

Аналогичным образом осуществляется и декомпозиция потоков через границы диаграмм, позволяющая упростить детализирующую БРБ. Пусть имеется поток ЗАГОТОВКИ, входящий в детализируемый процесс. На диаграмме, детализирующей этот процесс, декомпозируемого потока может не быть совсем, но иместо него могут быть детализирующие потоки (как будто бы переданные из детализируемого процесса). Применение таких операций над данными позволяет обеспечить структуризацию данных, увеличивает наглядность и читабельность диаграмм.

Для обеспечения декомпозиции данных и некоторых других сервисных возможностей к БРБ добавляются следующие типы объектов [7, 10].

Групповой узел. Объект предназначен для расщепления и объединения потоков. В некоторых случаях может отсутствовать (фактически вырождаться в точку слияния/расщепления потоков на диаграмме).

Узел-предок. Объект позволяет увязывать входящие и выходящие потоки между детализируемым процессом и детализирующей диаграммой.

Неиспользуемый узел. Объект применяется в случае, когда декомпозиция данных производится в групповом узле, при этом требуются не все элементы входящего в узел потока.

Узел изменения имени. Объект позволяет неоднозначно именовать потоки, при этом их содержимое эквивалентно. Например, если при проектировании разных частей системы один и тот же фрагмент данных получил различные имена, то эквивалентность соответствующих потоков данных обеспечивается узлом изменения имени. При этом один из потоков данных является входным для данного узла, а другой — выходным.

Также можно использовать текст в свободном формате в любом месте диаграммы.

Главная цель построения иерархического множества БРБ заключается в том, чтобы сделать требования ясными и понятными на каждом уровне детализации, а также разбить эти требования на части с однозначно определенными отношениями между ними. При этом целесообразно пользоваться следующими рекомендациями :

• размещать на каждой диаграмме от 3 до 6—7 процессов. Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана исходя из соображений здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса;

• не загромождать диаграммы несущественными на данном уровне деталями;

• декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов; эти две работы должны выполняться одновременно, а не последовательно;

• выбирать ясные, отражающие суть дела, имена процессов и потоков для обеспечения читабельности диаграмм, при. этом стараться не использовать аббревиатуры;

• однократно определять функционально идентичные процессы на самом верхнем уровне (где они необходимы) ссылаться на них на нижних уровнях;

• пользоваться простейшими диаграммными техниками: по> возможности описывать что-либо с помощью ОБО, а не с помощью более сложных объектов;

• отделять управляющие структуры от обрабатывающих структур (процессов), локализовывать управляющие структуры.

В соответствии с рекомендациями моделирование включает следующие этапы [7,10].

1. Расчленение множества требований и организация их в основные функциональные группы.

2. Идентификация внешних объектов, с которыми должна быть связана система.

3. Идентификация основных видов информации, циркулирующей между системой и внешними объектами.

4. Предварительная разработка контекстной диаграммы, на которой основные функциональные группы представляются процессами, внешние объекты — внешними сущностями, основные виды информации — потоками данных между процессами и внешними сущностями.

5. Изучение предварительной контекстной диаграммы и внесение в нее изменений по результатам ответов на возникающие вопросы по всем ее частям.

6. Построение контекстной диаграммы путем объединения всех процессов предварительной диаграммы в один процесс, а. также диаграммы сгруппированых потоков.

7. Формирование ОРБ первого уровня на базе процессов предварительной контекстной диаграммы.

8. Проверка основных требований по ОРБ первого уровня.

9. Декомпозиция каждого процесса текущей DFD с помощью детализирующей диаграммы или спецификации процесса.

9. Проверка основных требований по DFD соответствующе-I о уровня.

10.Добавление определений новых потоков в словарь данных при каждом их появлении на диаграммах.

11.Параллельное процессу декомпозиции изучение требований (в том числе и вновь поступающих), разбиение их на элементарные и идентификация процессов или спецификаций процессов, соответствующих этим требованиям.

12.После построения двух-трех уровней проведение ревизии с целью коррекции и улучшения читабельности модели.

13.Построение спецификации процесса (а не простейшей диаграммы) в случае, если некоторую функцию сложно или невозможно выразить комбинацией процессов.

МетодологияARIS

 

Одной из современных методологий бизнес-моделирования, получившей широкое распространение в России, является методология ARIS (Architecture of Integrated Information Systems) — проектирование интегрированных АИС ]. В настоящий момент методология ARIS является наиболее объемной и содержит около 100 различных бизнес-моделей, используемых для описания, анализа и оптимизации различных аспектов деятельности организации. Часть моделей используется в настроечном модуле интегрированной АИС SAP/R3, который применяется при внедрении системы и ее настройки в соответствии с деятельностью компании.

Методология ARIS предусматривает четыре группы бизнес-моделей (рис. 2.12).

1. «Оргструктура» состоит из моделей, с помощью которых описывается организационная структура компании, а также элементы внутренней инфраструктуры организации.

2. «Функции» состоят из моделей, используемых для описания стратегических целей компании, функций и прочих элементов функциональной деятельности организации.

3. «Информация» состоит из моделей, с помощью которых описывается информация, используемая в деятельности организации.

 

 
 

4. «Процессы» состоят из моделей, используемых для описания бизнес-процессов, а также различных взаимосвязей между структурой, функциями и информацией.

Большим преимуществом методологии ARISявляется эргономичность и высокая степень визуализации бизнес-моделей, что делает методологию удобной и доступной в использовании всеми сотрудниками компании, начиная от топ-менеджеров и заканчивая рядовыми сотрудниками. В методологии ARISсмысловое значение имеет цвет, что повышает восприимчивость и читабельность схем бизнес-моделей. Например, структурные подразделения по умолчанию изображаются желтым цветом, бизнес-процессы и операции — зеленым.

Помимо большего числа моделей по сравнению с другими методологиями, методология ARIS имеет наибольшее число различных объектов, используемых при построении бизнес-моделей, что увеличивает их аналитичность. Например, материальные и информационные потоки на процессных схемах обозначаются разными по форме и цвету объектами, что позволяет быстро определить тип потока.

Несмотря на большое число моделей в методологии ARIS, в проектах по описанию и оптимизации деятельности в общем случае их используется не более десяти. Методология ARISпозиционирует себя как конструктор, из которого под конкретный проект в зависимости от его целей и задач разрабатывается

 

Модель «Диаграмма целей» — СЮ — применяется для описания стратегических целей компании, их иерархической упорядоченности, а также взаимосвязи целей с продуктами и услугами, производимыми компанией, и бизнес-процессами, поддерживающими их производство (рис. 2.13).

 
 

 

Модель «Дерево продуктов и услуг» — PST — применяется для описания продуктов и услуг, производимых в компании, а также для взаимосвязи со стратегическими целями компании, бизнес-процессами, поддерживающими их производство (рис. 2.14) [8].

Модель «Дерево функций» — FT — описывает функции, выполняемые в компании, и их иерархию. Модель часто применяется для построения дерева бизнес-процессов компании (рис. 2.15) [8].

Модель «Диаграмма окружения процесса» — FAD — позволяет описать окружение или границы бизнес-процесса, показывая его входы, выходы, поставщиков и клиентов (рис. 2.16).

 

 

 
 

Модель «Диаграмма цепочки добавленной стоимости» — VACD — является прототипом классического DFD-стандарта и используется для описания бизнес-процессов верхнего уровня. Существенным различием этой и других процессных моделей является то, что информационные и материальные потоки на

 
 

Рис.2.15. Модель «Дерево функций» - FT/ARIS

 
 

 

схеме VACD изображаются не стрелками, а объектами. При этом: для каждого типа потока используется свой объект. В отличие от классического подхода здесь также используются логические связи между работами, которые позволяют отобразить логическую последовательность выполнения работ. В качестве одного из вариантов логической последовательности может выступать временная последовательность выполнения работ, что характерно для классического подхода WFD (рис. 2.17)

 

 

Рис. 2.17.

Модель «Диаграмма цепочки добавленной стоимости» — VACD/ARIS

 

Модель «Матрица выбора процесса» — РБМ — является прототипом классического ОРБ-стандарта и используется как альтернатива УАСО-модели. Матрица выбора процессов по отношению к диаграмме цепочки добавленной стоимости является, с одной стороны, более упрощенным вариантом описания процесса, с другой — содержит дополнительные объекты, позволяющие выявить другие аспекты бизнес-процесса. Простота матрицы выбора бизнес-процессов в том, что на этой модели не отражаются информационные и материальные потоки. Что касается других аспектов, то данная модель позволяет на одной схеме компактно и наглядно показать различные варианты выполнения описываемого бизнес-процесса.

Матрицу выбора процессов целесообразно применять вместо диаграммы цепочки добавленной стоимости в случаях, когда описываемый бизнес-процесс имеет несколько вариантов исполнения, каждый из которых ложится на базовую схему. Пример применения матрицы выбора процессов для описания деятельности компании, имеющей функциональную организационную структуру, показан на рис. 2.18.

 

 

Рис. 2.18. Модель «Матрица выбора процессов» — PSM/AR1S

 

Модель «Расширенная цепочка процессов, управляемая событиями» — еЕРС — является прототипом классического WFD-стандарта и используется для описания бизнес-процессов нижнего уровня. Существенным отличием еЕРС-модели от классической WFD-схемы является наличие в модели объекта, который называется событием. С помощью событий изображается факт, время или событие, инициирующие начало выполнения работ процесса, а также факт или время их завершения (рис. 2.19) [8].

Модель «Организационная структура» — ORG — используется для описания организационной структуры компании; отображает структурные подразделения, группы, должности, роли и прочие элементы организационной структуры и связи между ними (рис. 2.20) [8].

Модель «Диаграмма типов информационных систем» — ASPD — используется для описания структуры информационных систем, применяемых в компании. Здесь отображаются типы и модули информационных систем, программные продукты, взаимосвязь между ними и автоматизируемыми бизнес-процессами организации (рис. 2.21).

 

 

 
 

 

 

Рис. 2.21. Модель «Диаграмма типов информационных систем» - ASTD/ARIS

 

 

Объектно-ориентированный подход. Язык унифицированного моделирования UML

 

Использование языка UML для моделирования организации и ее бизнес-процессов позволяет в полной мере отобразить структурное, статическое и динамическое представление. Получаемая в ходе объектно-ориентированного анализа и проектирования UML-модель организации представляет собой совокупность взаимосвязанных диаграмм, идентифицирующих бизнес-процессы, описывающих их жизненный цикл, структуру организации и взаимодействие процессов функционирования во времени и пространстве с привязкой к используемым ресурсам и получаемым результатам [9].

UML-модель применительно к бизнес-моделированию может включать в себя следующие диаграммы.

1. Структурный аспект: Use-Case-диаграммы, идентифицирующие бизнес-процессы и бизнес-транзакции, их взаимосвязь, соподчиненность и взаимодействие; Package-диаграммы, структурно организующие предметную область и иерархически упорядоченную структуру организации.

2. Динамический аспект: Behavior-диаграммы (Activity, State-chart, Collaboration, Sequence), описывающие поведение (жизненный цикл) бизнес-процессов в их взаимодействии во времени и в пространстве с привязкой к используемым ресурсам и получаемым результатам.

3. Статический аспект: Class-диаграммы, отражающие совокупность взаимосвязанных объектов. В этих диаграммах рассматриваются логическая структура предметной области, ее внутренние концепции, иерархия объектов и статические связи между ними, структуры данных и объектов; Deployment-диаграммы, отражающие технологические ресурсы организации.

Не обязательно строить все диаграммы: аналитик или разработчик сам определит нужные ему уровень детализации, полноту описания и точку зрения.

UML-модель позволяет получить подробные ответы на стандартные вопросы о деятельности организации, в частности:

• каковы виды деятельности организации и предметные об^ ласти управления (предметно-структурный аспект);

• каковы бизнес-процессы организации (функциональный аспект);

• кто и где выполняет бизнес-процессы (организационный аспект);

• как выполняются бизнес-процессы (методический аспект);

• когда выполняются бизнес-процессы (динамический аспект);

• что, откуда и куда перемещается, обрабатывается, получается в материальных и в связанных с ними информационных потоках (сущностно-элементный аспект);

• с помощью чего (какими инструментами) выполняются бизнес-процессы (ресурсный и технологический аспекты).

В табл. 2.3 представлена связь между различными аспектами моделирования деятельности организации и их отражение на иМЬ-диаграммах [9].

 

Таблица 2.3.Связь между аспектами моделирования и UML-диаграммами

 

Аспект моделирования UML-диаграмма
Предметно-структурный Package-диаграммы
Функциональный Use-Case-диаграммы
Организационный Рackage-диаграммы, С1аss-диаграммы
Методический Activity-диаграммы
Динамический Statechart-, Collaboration-,Sequence-диаграммы
Сущностно-элементный Class-диаграммы
Технологический Deployment-диаграммы

 

Ядро UML поддерживает использование расширений стандартных элементов в виде стереотипов, именованных значений, графических обозначений, позволяющих уточнить синтаксис и семантику модели и таким образом лучше понять моделируемую предметную область. Для бизнес-моделирования деятельности организации используют следующие расширения (табл. 2.4)

Аctivity-диаграммы раскрывают методический аспект бизнес-процессов. Каждая бизнес-транзакция есть полная или частичная реализация некоторой управленческой функции, итогом выполнения которой является значимый на том или ином уровне управления результат. Для достижения данного результата

 

 
 

Таблица2.4. Расширение UML


 

при выполнении бизнес-транзакции используются некоторые материальные, информационные и иные объекты (бизнес-сущности)

 
 

идентифицированным на Class-диаграмме со стереотипом «Organization Unit». Бизнес-сущности в ходе выполнения бизнес-транзакции могут менять свое внутреннее состояние, что также находит отражение на Activity-диаграммах, а полная карта состояний и переходов между ними — на соответствующих Statechart-диаграммах [9].

Кроме того, каждая бизнес-транзакция или состояние могут быть детализованы на вложенных Activity- и Statechart-диаграм-мах соответственно.

Таким образом, Activity-диаграммы, отражая реализацию бизнес-процесса, выступают как связующее звено между другими диаграммами и элементами URL-модели.

Идентифицированный однажды элемент модели может быть использован на других диаграммах, отражая многообразие его связей, взаимодействий и особенностей. Использование такого подхода — серьезное преимущество UML-моделей.

Таким образом, UML-модель выступает как средство документирования и анализа существующих бизнес-процессов, их оптимизации или перепроектирования, моделирования новых бизнес-процессов во взаимосвязи с организационной структурой, предметными областями и функциями управления организацией, а также выступает как фундаментальная основа для формирования требований к построению АИС, автоматизирующей деятельность организации.




<== предыдущая лекция | следующая лекция ==>
Тема 2.1.Этапы анализа предметной области | I Этапы развития САSЕ-систем


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.019 сек.