Множество символов, используемых при записи текста, называется алфавитом. Количество символов в алфавите называется его мощностью.
Для представления текстовой информации в компьютере чаще всего используется алфавит мощностью 256 символов. Один символ из такого алфавита несет 8 бит информации, т. к. 28 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.
Все символы такого алфавита пронумерованы от 0 до 255, а каждому номеру соответствует 8-разрядный двоичный код от 00000000 до 11111111. Этот код является порядковым номером символа в двоичной системе счисления.
Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.
Стандартными в этой таблице являются только первые 128 символов, т.е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов. О кодировании символов русского алфавита рассказывается в главе "Обработка документов".
В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику.
Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информации о его цвете.
Для черно-белого изображения (без полутонов) пиксел может принимать только два значения: белый и черный (светится – не светится), а для его кодирования достаточно одного бита памяти: 1 – белый, 0 – черный.
Пиксел на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксел недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксел, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 – черный, 10 – зеленый, 01 – красный, 11 – коричневый.
На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов – красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:
R
G
B
цвет
черный
синий
зеленый
голубой
R
G
B
цвет
красный
розовый
коричневый
белый
Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов – К и количество битов для их кодировки – N связаны между собой простой формулой: 2N = К.
В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пикселы которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.). Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.
Объекты векторного изображения, в отличии от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость). Подробнее о графических форматах рассказывается в разделе "Графика на компьютере".