русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм умножения

Умножение больших чисел может быть выполнено традиционным школьным способом «в столбик». Однако вместо использования массива промежуточных результатов гораздо эффективнее добавлять к произведению каждую новую строку немедленно после ее вычисления.
Если множимое состоит из m слов, множитель – из n слов, то произведение занимает не более m + n слов, независимо от того, выполняется знаковое или беззнаковое умножение. Рассмотрим реализацию умножения неотрицательных целых чисел (um-1, …, u0)b и (vn-1, …, v0)b по основанию b. Следующий алгоритм формирует их произведение (wm + n – 1, …, w0)b:


MULTIPLY (w, v, m, n)
for j = 0, …, m – 1 do wj := 0;
j := 0;
while j < n
do if vj > 0
then i := 0; k := 0;
while i < m
do t := ui * vj + wi+j + k:
wi+j := t mod b;
k := ;
 i := i + l;
wj + m := k;
else  wj + m := 0;
j := j + l;
return (wm + n - 1, …,w0)

На каждом шаге алгоритма умножения выполняются неравенства
.
Умножение больших чисел выполняется проще для беззнаковых операндов. Знак произведения получается как результат операции «ИСКЛЮЧАЮЩЕЕ-ИЛИ» над разрядами знака множителей.
Умножение целых чисел может быть существенно ускорено. Например, пусть . Тогда (алгоритм Карацубы)
(11)

Алгоритм Карацубы сводит задачу умножения двух чисел к нескольким задачам умножения чисел меньшей разрядности. Разбиение может осуществляться рекурсивно до тех пор, пока разрядность не уменьшится до поддерживаемой аппаратно (т.е. пока n не достигнет размера машинного слова). В этом случае число элементарных умножений для алгоритма Карацубы асимптотически сходится к .
Пример: 13 * 27 = 100 * 1 * 2 + 10 * (3 * 7 + 1 * 2) + 3 * 7 = 100 * 2 + 10 * (36 –
– 21 – 2) + 21 = 200 + 130 + 21 = 351.
Обобщением алгоритма Карацубы является алгоритм Тома–Кука, в котором множители могут разбиваться более чем на две части. Максимальной скоростью на сегодняшний день обладает алгоритм умножения на основе быстрого преобразования Фурье. В этом случае цифры произведения получаются как коэффициенты свертки цифр множителей, посчитанные с учетом переносов значений между коэффициентами.

Автор: Ярмолик, В. Н.

Просмотров: 2582

Вернуться в оглавление: элементы теории информации




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.