русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Структуры данных и алгоритмы

1. Основные понятия

Структуры данных и алгоритмы служат теми материалами, из которых строятся программы. Сам компьютер состоит из структур данных и алгоритмов. Встроенные структуры данных представлены теми регистрами и словами памяти, где хранятся двоичные величины. Заложенные в конструкцию аппаратуры алгоритмы - это воплощенные в электронных логических цепях жесткие правила, по которым занесенные в память данные интерпретируются как команды, подлежащие исполнению. Поэтому в основе работы всякого компьютера лежит умение оперировать только с одним видом данных - с отдельными битами,  или двоичными цифрами. Работает же с этими данными компьютер только в соответствии с неизменным набором алгоритмов, которые определяются системой команд центрального процессора.
Для точного описания абстрактных структур данных и алгоритмов программ используются системы формальных обозначений, называемые языками программирования, в которых смысл всякого предложения определяется точно и однозначно. Среди средств, представляемых почти всеми языками программирования, имеется возможность ссылаться на элемент данных, пользуясь присвоенным ему именем, или, иначе, идентификатором. Одни именованные величины являются константами, которые сохраняют постоянное значение в той части программы, где они определены, другие - переменными, которым с помощью оператора в программе может быть присвоено любое новое значение. Но до тех пор, пока программа не начала выполняться, значение переменных не определено. Компилятор, транслирующий текст программы в двоичный код, связывает каждый идентификатор с определенным адресом памяти. Но для того чтобы компилятор смог это выполнить, нужно сообщить о "типе" каждой именованной величины. Человек, решающий какую-нибудь задачу "вручную", обладает интуитивной способностью быстро разобраться в типах данных и тех операциях, которые для каждого типа справедливы. Для компьютера же все типы данных сводятся в конечном счете к последовательности битов, поэтому различие в типах следует делать явным.

Типы данных, принятые в языках программирования, включают натуральные и целые числа, вещественные (действительные) числа (в виде приближенных десятичных дробей), литеры, строки и т.п. В некоторых языках программирования тип каждой константы или переменной  определяется  компилятором по форме записи присваиваемого значения. В большинстве же языков требуется, чтобы программист явно задал тип каждой переменной. Хотя при выполнении программы значение переменной может многократно меняться, тип ее меняться не должен никогда; это значит, что компилятор может проверить операции, выполняемые над этой переменной, и убедиться в том, что все они согласуются с описанием типа переменной. В зависимости от предназначения языка программирования защита типов, осуществляемая на этапе компиляции, может быть более или менее жесткой.
Структура данных относится, по существу, к "пространственным" понятиям: ее можно свести к схеме организации информации в памяти компьютера. Алгоритм же является соответствующим процедурным элементом в структуре программы - он служит рецептом расчета. 

Структуры данных, применяемые в алгоритмах, могут быть чрезвычайно сложными. Выбор правильного представления данных часто служит ключом к удачному программированию и может в большей степени сказываться на производительности программы, чем детали используемого алгоритма.

 

2. Хранение информации

В ЦВМ можно выделить три основных вида запоминающих устройств: сверхоперативная, оперативная и внешняя память.
Сверхоперативная память строится на регистрах. Регистры используются для временного хранения и преобразования информации. Некоторые из наиболее важных регистров содержатся в центральном процессоре компьютера. Центральный процессор содержит регистры, в которые помещаются операнды арифметических и иных операций. Сложение, вычитание и т.д. занесенной в регистры информации выполняется с помощью очень сложных логических схем. Кроме запоминания операндов и результатов арифметических операций, регистры используются также для временного хранения команд программы и управляющей информации.

Оперативная память предназначена для запоминания более постоянной  по своей природе информации. Во время выполнения программы ее команды и данные в основном размещаются в ячейках оперативной памяти. Важнейшим свойством оперативной памяти является адресуемость. Это означает, что каждая ячейка памяти имеет свой идентификатор-адрес, однозначно идентифицирующий ее в общем массиве ячеек памяти. Адреса ячеек являются операндами тех машинных команд, которые обращаются к оперативной памяти. В подавляющем большинстве современных вычислительных систем единицей адресации является байт - ячейка, состоящая из 8 двоичных  разрядов. Определенная ячейка оперативной памяти или множество ячеек может быть связано с конкретной переменной в программе. Однако для выполнения вычислений, в которых участвует переменная, необходимо, чтобы до начала вычислений значение переменной было перенесено из ячейки памяти в регистр. Если результат вычисления должен быть присвоен переменной, то результирующая величина снова должна быть перенесена из соответствующего регистра в связанную с этой переменной ячейку оперативной памяти.

Внешняя память служит прежде всего для долговременного хранения данных. Характерным для данных на внешней памяти является то, что они могут сохраняться там даже после завершения создавшей их программы, и могут быть впоследствии многократно использованы той же программой при повторных ее запусках или другими программами. Внешняя память используется также для хранения самих программ, когда они не выполняются. Поскольку стоимость внешней памяти значительно меньше оперативной, а объем значительно больше, то еще одно назначение внешней памяти - временное хранение тех кодов и данных выполняемой программы, которые не используются на данном этапе ее выполнения. Активные коды выполняемой программы и обрабатываемые ею на данном этапе данные должны обязательно быть размещены в оперативной памяти, так как прямой обмен между внешней памятью и регистрами невозможен.
Как хранилище данных, внешняя память обладает в основном теми же свойствами, что и оперативная, в том числе и свойством адресуемости. Поэтому в принципе структуры данных на внешней памяти могут быть теми же, что и в оперативной, и алгоритмы их обработки могут быть одинаковыми. Но внешняя память имеет совершенно иную физическую природу, для нее применяются (на физическом уровне) иные методы доступа, и этот доступ имеет другие временные характеристики. Это приводит к тому, что структуры и алгоритмы, эффективные для оперативной памяти, не оказываются таковыми для внешней памяти. Поэтому структуры и алгоритмы для внешней памяти обычно выделяют в отдельный раздел курса.

 

3. Классификация структур данных

Данные, рассматриваемые в виде последовательности битов, имеют очень простую организацию или, другими словами, слабо структурированы.

 


Под СТРУКТУРОЙ ДАННЫХ в общем случае понимают множество элементов данных и множество связей между ними.

Вводится дополнительная классификация структур данных, направления которой соответствуют различным аспектам их рассмотрения. Прежде чем приступать к изучению конкретных структур данных, дадим их общую классификацию по нескольким признакам.

Понятие ФИЗИЧЕСКОЙ структуры данных отражает способ физического представления данных в памяти машины. Рассмотрение же структуры данных без учета ее представления в машинной памяти называется абстрактной или ЛОГИЧЕСКОЙ структурой. Существуют процедуры, осуществляющие отображение логической структуры в физическую и, наоборот. Эти процедуры обеспечивают, кроме того, доступ к физическим структурам и выполнение над ними различных операций, причем каждая операция рассматривается применительно к логической или физической структуре данных.

ПРОСТЫМИ (базовыми, примитивными) структурами (типами) данных называются такие, которые не могут быть расчленены на составные части, большие, чем биты. ИНТЕГРИРОВАННЫМИ (структурированными, композитными, сложными) называются такие структуры данных, составными частями которых являются другие структуры - простые или в свою очередь интегрированные.

В зависимости от отсутствия или наличия явно заданных связей между элементами данных принято различать НЕСВЯЗНЫЕ и СВЯЗНЫЕ структуры.

Весьма важный признак структуры данных - ее изменчивость - изменение числа элементов и (или) связей между элементами структуры. В определении изменчивости структуры не отражен факт изменения значений элементов данных, поскольку в этом случае все структуры данных имели бы свойство изменчивости. По признаку изменчивости различают структуры СТАТИЧЕСКИЕ, ПОЛУСТАТИЧЕСКИЕ и ДИНАМИЧЕСКИЕ.

Важный признак структуры данных - характер упорядоченности ее элементов. По этому признаку структуры можно делить на ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ структуры.

В языках программирования понятие "структуры данных" тесно связано с понятием "типы данных". Любые данные, т.е. константы, переменные, значения функций или выражения, характеризуются своими типами. Информация по каждому типу однозначно определяет :

  1. структуру хранения данных указанного типа,  т.е. выделение памяти и представление данных в ней, с одной стороны, и интерпретацию двоичного представления, с другой;
  2. множество допустимых значений, которые может иметь тот или иной объект описываемого типа;
  3. множество допустимых операций, которые применимы к объекту описываемого типа.

 

4.  Операции над структурами данных

Над всеми структурами данных могут выполняться четыре операции: создание, уничтожение, выбор (доступ), обновление.

Операция создания заключается в выделении памяти для структуры данных. Память может выделяться в процессе выполнения программы при первом появлении имени переменной в исходной программе или на этапе компиляции.
Операция уничтожения структур данных противоположна по своему действию операции создания.

Операция выбора используется программистами для доступа к данным внутри самой структуры. Форма операции доступа зависит от типа структуры данных, к которой осуществляется обращение.
Операция обновления позволяет изменить значения данных в структуре данных.

Вышеуказанные четыре операции обязательны для всех структур и типов данных. Помимо этих общих операций для каждой структуры данных могут быть определены операции специфические, работающие только с данными указанного типа (данной структуры).

 

5  Структурность данных и технология программирования

Знание структуры данных позволяет организовать их хранение и обработку максимально эффективным образом - с точки зрения минимизации затрат как памяти, так и процессорного времени. Другим не менее важным преимуществом, которое обеспечивается структурным подходом к данным, является возможность структурирования сложного программного изделия.

При структурировании больших программных изделий возможно применение подхода, основанного на структуризации алгоритмов и известного, как "нисходящее" проектирование, "программирование сверху вниз", или подхода, основанного на структуризации данных и  известного, как "восходящее" проектирование, "программирование снизу вверх".
В первом случае структурируют прежде всего действия, которые должна выполнять программа. Большую и сложную задачу, стоящую перед проектируемым программным изделием, представляют в виде нескольких подзадач меньшего объема.

Другой подход к структуризации основывается на данных. Инструментальные средства программирования предоставляют набор базовых (простых, примитивных) типов данных и операции над ними. Интегрируя базовые типы, создаются более сложные типы данных и определяются новые операции над сложными типами. В идеале последний шаг композиции дает типы данных, соответствующие входным и выходным данным задачи, а операции над этими типами реализуют в полном объеме задачу проекта.

Еще одним чрезвычайно продуктивным технологическим приемом, связанным со структуризацией данных является инкапсуляция. Смысл ее состоит в том, что сконструированный новый тип данных оформляется таким образом, что его внутренняя структура становится недоступной для программиста - пользователя этого типа. Инкапсуляция чрезвычайно полезна и как средство преодоления сложности, и как средство защиты от ошибок. Первая цель достигается за счет того, что сложность внутренней структуры нового типа данных и алгоритмов выполнения операций над ним исключается из поля зрения программиста-пользователя. Вторая цель достигается тем, что возможности доступа пользователя ограничиваются лишь заведомо корректными входными точками, следовательно, снижается и вероятность ошибок.
Технология баз данных развивалась параллельно с технологией языков программирования и не всегда согласованно с ней. Отчасти этим, а отчасти и объективными различиями в природе задач, решаемых системами управления базами данных (СУБД) и  системами программирования, вызваны некоторые терминологические и понятийные различия в подходе к данным в этих двух сферах. Ключевым понятием в СУБД является понятие модели данных, в основном тождественное понятию логической структуры данных. Отметим, что физическая структура данных в СУБД не рассматривается вообще. Но сами СУБД являются программными пакетами, выполняющими отображение физической структуры в логическую (в модель данных). Для реализации этих пакетов используются те или иные системы программирования, разработчики СУБД, следовательно, имеют дело со структурами данных в терминах систем программирования. Для пользователя же внутренняя структура СУБД и физическая структура данных совершенно прозрачна; он имеет дело только с моделью данных и с другими понятиями логического уровня.

Просмотров: 153124

Вернуться в оглавление:Cтруктура и организация данных




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.