русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации


Ортогональные преобразования отражением

Следующей важной унитарной матрицей, с помощью которой в различных алгоритмах выполняются ортогональные преобразования, являются матрицы отражения. Использование этого инструмента позволяет, например, последовательными эквивалентными преобразова-ниями свести исходную матрицу к верхней треугольной (QR-алгоритмы), трех или двух диагональным и т.д.

Смысл этого подхода состоит в том, чтобы умножением матрицы A слева на специально подобранную унитарную матрицу один из столбцов исходной матрицы (например, ) преобразовать в вектор, параллельный единичному координатному вектору  (или ). Тогда, последовательно подбирая нужные унитарные матрицы  и соответствующие единичные векторы  , после  циклов эквивалентных преобразований можно будет получить верхнюю треугольную матрицу:

При выборе в качестве начального вектора   и умножениях матрицы A на ортогональные матрицы справа в конечном счете можно получить нижнюю треугольную матрицу.

Весь вопрос состоит в том, как формировать унитарную матрицу с заданными свойствами из векторов   и  столбцов  матрицы A.

Из аналитической геометрии известно, что любые векторы, лежащие в плоскости, взаимно перпендикулярны с ее нормалью, т.е. их проекции на нормаль равны нулю. Последнее эквивалентно равенству нулю скалярных произведений.

Чтобы (k+1)-мерный векторный треугольник  сделать параллельным k-мерной гиперплоскости с нормалью n (вектор единичной длины, перпендикулярный плоскости), необходимо приравнять нулю скалярное произведение:   (n,y)=0.

Пусть вектор  не параллелен плоскости, заданной своей нормалью, тогда его проекции на эту плоскость и нормаль соответственно будут представлены векторами  и . Вектор z и вектор зеркально-симметричный ему  через эти проекции можно выразить так:

Разрешив  первое относительно   и  подставив его в , получим

Проекцию вектора  можно заменить скалярным произведением (n,z) и подставить в выражение для , выразив тем самым зеркально отраженный вектор через  исходный вектор и нормаль гиперплоскости:

Здесь M представляет унитарную матрицу, преобразующую произвольный вектор в зеркально отраженный. В том, что матрица унитарная, нетрудно убедиться, проверив ее произведение со своей комплексно сопряженной:

Выражение для зеркально отраженного вектора позволяет представить нормальный вектор в виде линейной функции  от задаваемого  вектора z:

Число  в знаменателе является нормирующим множителем. Нормальный вектор представляющий гиперплоскость обязан иметь единичную длину. Коэффициент , который в общем случае является комплексным числом, необходимо выбрать так, чтобы скалярное произведение  было больше нуля. Если учесть соотношение для согласованных норм:   , то

Выбрав  для комплексных матриц или   –  для действительных матриц, будем иметь

Такое нормирование не нарушает коллинеарности отраженного и единичного векторов:

Рассмотрим пример воздействия ортогонального преобразования на матрицу

 

.

 

 

 

 

Приведенная методика получения унитарных (и ортогональных в частности) матриц используется во многих стандартных алгоритмах в качестве инструмента частичного преобразования исходных матриц к двух или трех диагональным, для которых в дальнейшем применяются рекуррентные формулы получения решения уравнений, называемые в литературе методом прогонки для систем с ленточными матрицами.

Просмотров: 1947

Вернуться в оглавление:Введение в численные методы



Калашников В. И. Введение в численные методы: Учеб. пособие. – Харьков: НТУ “ХПИ”, 2002. – 132 с. – На русск. яз.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские





Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.