русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аппроксимация функций методом наименьших квадратов

Основным недостатком  интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов , n раз меняющих свой знак. Кроме того, исходные табличные значения функции заданы неточно по разным причинам, поэтому строить многочлены выше 4-5-й  степени, зная, что из теоретических исследований функция в интервале таблицы совсем не такая, не имеет особого смысла.

Если табличные значения  функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.

Наиболее популярным критерием близости является минимум среднего квадрата отклонения:

,

где           – точка экспериментальных данных из таблицы,

 – значение искомой зависимости в точке .

Если искомую зависимость желательно представить многочленом  степени n, то (n+1)коэффициент в нем будут представлять неизвестные параметры. Подставив в сумму квадратов отклонений искомый многочлен, получим функционал, зависящий от этих параметров:

Чтобы функционал  был минимален, необходимо все частные производные функционала по параметрам приравнять нулю и систему разрешить относительно неизвестных параметров . Эти действия приводят к следующей системе линейных уравнений

Здесь        – постоянный коэффициент, равный сумме (j+k)-тых

степеней  всех значений аргументов. Для их ручного вычисления

удобно  к исходной таблице данных добавить еще   столбцов.

 – числовые значения в правой части системы линей-

ных алгебраических уравнений, для подсчета которых тоже

удобно к исходной таблице данных добавить еще  n  столбцов.

Демонстрацию метода наименьших квадратов проведем для данных с количеством точек в таблице, равным 4. Максимальная степень аппроксимирующего многочлена для такого набора равна 3, так как должно  выполняться соотношение: . Для максимальной степени  аппроксимирующий и интерполяционный многочлены равны.

Пусть таблица данных после добавления в нее дополнительных колонок выглядит следующим образом:

В нижней строке размещаем итоговые суммы по каждой колонке.

Система уравнений для полинома третьей степени:

Решив систему, найдем:  

Эта же таблица без добавления чего-либо позволяет найти коэффициенты аппроксимирующего многочлена второй степени. Для этого достаточно в системе для полинома третьей степени убрать 4-е уравнение, а из остальных  уравнений исключить слагаемые с неизвестной . В результате система уравнений для полинома второй степени будет:

Решив систему, найдем:  

Аналогично можно уменьшать число уравнений для построения аппроксимирующих многочленов первой и нулевой степеней.

На рисунке 1 показаны графики двух аппроксимирующих многочленов второй и третьей степени. Многочлен третьей степени проходит через 4 заданные точки, а многочлен второй степени проходит сквозь множество заданных точек с минимумом суммы квадратов отклонений от них, что хорошо видно на графиках.

Рисунок 1.

Просмотров: 2412

Вернуться в оглавление:Введение в численные методы



Калашников В. И. Введение в численные методы: Учеб. пособие. – Харьков: НТУ “ХПИ”, 2002. – 132 с. – На русск. яз.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.