русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Управление доступом в Java-среде


Дата добавления: 2013-12-23; просмотров: 1229; Нарушение авторских прав


Java – это объектно-ориентированная система программирования, поэтому и управление доступом в ней спроектировано и реализовано в объектном стиле. По этой причине рассмотреть Java-среду для нас очень важно. Подробно о Java-технологии и безопасности Java-среды рассказано в статье А. Таранова и В. Цишевского "Java в три года" (Jet Info, 1998, 11-12). С разрешения авторов далее используются ее фрагменты.

Прежде всего, остановимся на эволюции модели безопасности Java. В JDK 1.0 была предложена концепция "песочницы" (sandbox) – замкнутой среды, в которой выполняются потенциально ненадежные программы (апплеты, поступившие по сети). Программы, располагающиеся на локальном компьютере, считались абсолютно надежными, и им было доступно все, что доступно виртуальной Java-машине.

В число ограничений, налагаемых "песочницей", входит запрет на доступ к локальной файловой системе, на сетевое взаимодействие со всеми хостами, кроме источника апплета, и т.п. Независимо от уровня достигаемой при этом безопасности (а проблемы возникали и с разделением свой/чужой, и с определением источника апплета), наложенные ограничения следует признать слишком обременительными: возможности для содержательных действий у апплетов почти не остается.

Чтобы справиться с этой проблемой, в JDK 1.1 ввели деление источников (точнее, распространителей) апплетов на надежные и ненадежные (источник определялся по электронной подписи). Надежные апплеты приравнивались в правах к "родному" коду. Сделанное послабление решило проблемы тех, кому прав не хватало, но защита осталась неэшелонированной и, следовательно, неполной.

В JDK 1.2 сформировалась модель безопасности, используемая и в Java 2. От модели "песочницы" отказались. Оформились три основных понятия:

  • источник программы;
  • право и множество прав;
  • политика безопасности.

Источник программы определяется парой (URL, распространители программы). Последние задаются набором цифровых сертификатов.



Право – это абстрактное понятие, за которым, как и положено в объектной среде, стоят классы и объекты. В большинстве случаев право определяется двумя цепочками символов – именем ресурса и действием. Например, в качестве ресурса может выступать файл, а в качестве действия – чтение. Важнейшим методом "правовых" объектов является implies(). Он проверяет, следует ли одно право (запрашиваемое) из другого (имеющегося).

Политика безопасности задает соответствие между источником и правами поступивших из него программ (формально можно считать, что каждому источнику соответствует своя "песочница"). В JDK 1.2 "родные" программы не имеют каких-либо привилегий в плане безопасности, и политика по отношению к ним может быть любой. В результате получился традиционный для современных ОС и СУБД механизм прав доступа со следующими особенностями:

  • Java-программы выступают не от имени пользователя, их запустившего, а от имени источника программы. (Это весьма глубокая и прогрессивная трактовка, если ее правильно развить, см. следующий раздел);
  • нет понятия владельца ресурсов, который мог бы менять права; последние задаются исключительно политикой безопасности (формально можно считать, что владельцем всего является тот, кто формирует политику);
  • механизмы безопасности снабжены объектной оберткой.

Весьма важным понятием в модели безопасности JDK 1.2 является контекст выполнения. Когда виртуальная Java-машина проверяет права доступа объекта к системному ресурсу, она рассматривает не только текущий объект, но и предыдущие элементы стека вызовов. Доступ предоставляется только тогда, когда нужным правом обладают все объекты в стеке. Разработчики Java называют это реализацией принципа минимизации привилегий.

На первый взгляд, учет контекста представляется логичным. Нельзя допускать, чтобы вызов какого-либо метода расширял права доступа хотя бы по той причине, что доступ к системным ресурсам осуществляется не напрямую, а с помощью системных объектов, имеющих все права.

К сожалению, подобные доводы противоречат одному из основных принципов объектного подхода – принципу инкапсуляции. Если объект A обращается к объекту B, он не может и не должен знать, как реализован B и какими ресурсами он пользуется для своих целей. Если A имеет право вызывать какой-либо метод B с некоторыми значениями аргументов, B обязан обслужить вызов. В противном случае при формировании политики безопасности придется учитывать возможный граф вызовов объектов, что, конечно же, нереально.

Разработчики Java осознавали эту проблему. Чтобы справиться с ней, они ввели понятие привилегированного интервала программы. При выполнении такого интервала контекст игнорируется. Привилегированная программа отвечает за себя, не интересуясь предысторией. Аналогом привилегированных программ являются файлы с битами переустановки идентификатора пользователя/группы в ОС Unix, что лишний раз подтверждает традиционность подхода, реализованного в JDK 1.2. Известны угрозы безопасности, которые привносят подобные файлы. Теперь это не лучшее средство ОС Unix перекочевало в Java.

Рассмотрим дисциплину контроля прав доступа более формально.

Класс AccessController (встроенный менеджер безопасности) предоставляет единый метод для проверки заданного права в текущем контексте – checkPermission (Permission). Это лучше (по причине параметризуемости), чем множество методов вида checkXXX, присутствующих в SecurityManager – динамически изменяемом менеджере безопасности из ранних версий JDK.

Пусть текущий контекст выполнения состоит из N стековых фреймов (верхний соответствует методу, вызвавшему checkPermission(p)). Метод checkPermission реализует следующий алгоритм (см. Листинг 10.1).

i = N;while (i > 0) { if (метод, породивший i-й фрейм, не имеет проверяемого права) { throw AccessControlException } else if (i-й фрейм помечен как привилегированный) { return; } i = i – 1;};// Выясним, есть ли проверяемое право у унаследованного контекстаinheritedContext.checkPermission (p);

Листинг 10.1. Алгоритм работы метода checkPermission класса AccessController. (html, txt)

Сначала в стеке ищется фрейм, не обладающий проверяемым правом. Проверка производится до тех пор, пока либо не будет исчерпан стек, либо не встретится "привилегированный" фрейм, созданный в результате обращения к методу doPrivileged(PrivilegedAction) класса AccessController. Если при порождении текущего потока выполнения был сохранен контекст inheritedContext, проверяется и он. При положительном результате проверки метод checkPermission(p) возвращает управление, при отрицательном возникает исключительная ситуация AccessControlException.

Выбранный подход имеет один недостаток – тяжеловесность реализации. В частности, при порождении нового потока управления с ним приходится ассоциировать зафиксированный "родительский" контекст и, соответственно, проверять последний в процессе контроля прав доступа.

Отметим, что этот подход не распространяется на распределенный случай (хотя бы потому, что контекст имеет лишь локальный смысл, как, впрочем, и политика безопасности).

В целом средства управления доступом в JDK 1.2 можно оценить как "наполовину объектные". Реализация оформлена в виде интерфейсов и классов, однако по-прежнему разграничивается доступ к необъектным сущностям – ресурсам в традиционном понимании. Не учитывается семантика доступа. Имеют место и другие отмеченные выше концептуальные проблемы.



<== предыдущая лекция | следующая лекция ==>
Ролевое управление доступом | Возможный подход к управлению доступом в распределенной объектной среде


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.