русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ПРОЦЕСС МОДЕЛИРОВАНИЯ


Дата добавления: 2013-12-23; просмотров: 906; Нарушение авторских прав


Математическое моделирование предполагает исследовательскую стратегию, несколько отличающуюся от стратегий тех основных форм политологического исследования, которые описаны нами в других главах, поскольку оно основывается одновременно как на индукции, так и на дедукции. Сейчас мы обсудим общий процесс построения модели, в суммарном виде изображенной на рис. 17.1.

 

Первый шаг при построении модели – индуктивный: это отбор наблюдений, относящихся к тому процессу, который [c.469] предстоит моделировать.

Второй шаг заключается в переходе от определения проблемы к собственно построению неформальной модели. Неформальная модель – это набор таких инструментов, которые способны объяснить отобранные нами наблюдения, но при этом определены недостаточно строго и нельзя с точностью проверить степень их логической взаимоувязанности. К примеру, если объектом моделирования является гонка вооружений (см. пример 1), то неформальная модель могла бы выглядеть следующим образом: “Гонка вооружений происходит потому, что государства боятся вооружений, имеющихся у других государств; пределы ее ограничены стоимостью вооружений”. Это утверждение сообщает нам нечто о механизмах, движущих гонку вооружений, но для окончательного варианта модели оно недостаточно специфицировано.

На этой стадии большинство разработчиков моделей рассматривают целый ряд наборов неформальных допущений, способных объяснить одни и те же данные; тем [c.470]самым они рассматривают несколько потенциальных моделей и пытаются решить, какая из них лучше всего отображает изучаемую проблему. Иначе говоря, разработчик модели старается найти различные способы установления логического соответствия между моделью и реальным миром. Это критический момент в процессе моделирования. Если лежащая в основе модели неформальная теория несостоятельна, то ее не спасет никакое количество изощренных математических приемов.



Приобретя определенный опыт в моделировании, исследователь обычно переходит от неформальных моделей к поиску среди существующих формальных моделей такой, которая бы наиболее адекватно подходила к его наблюдениям. Формальная модель отличается от неформальной тем, что все допущения в ней сформулированы в математической форме. Существующие модели на самом деле представляют собой вполне конкретные наборы приемов, и, поскольку они уже кем-то изучались, возможные выводы из их исходных посылок уже известны, что придает определенное направление и дальнейшим разработкам.

Вместо того чтобы иметь дело с произвольным набором неформальных допущений, опытный разработчик будет стремиться рассуждать в терминах “игра с нулевой суммой”, “игра "дилемма заключенного"”, “разностное уравнение первой степени”, “модель Даунса” и других хорошо отработанных моделей. Опытный разработчик использует отработанные модели для того, чтобы от рассуждений типа “Для решения этой задачи необходимо иметь некоторое количество мелких металлических резцов, расположенных в ряд на плоскости и способных при возвратно-поступательном движении разрушать клеточную структуру древесины” перейти к рассуждениям типа “Здесь требуется пила”.

Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себярассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить те же самые идеи и процессы. Это, по всей видимости, самый сложный этап во всем процессе моделирования. Именно здесь могут вкрасться многочисленные ошибки и двусмысленности, поскольку в любом процессе перевода содержание одновременно и теряется, и расширяется. [c.471]

Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую, но при этом альтернативные математические модели могут иметь совершенно различный смысл. На самом деле это одна из главных причин, изначально толкающих нас к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка.

Перевод неформальной модели на язык математики – это еще один элемент в моделировании, где важную роль играют личный опыт разработчика и его способность к взвешенным оценкам. Во многих случаях можно сэкономить массу времени и усилий, делая определенные допущения, позволяющие легче оперировать с моделью на стадии ее математической обработки; в других случаях те же самые допущения могут вызвать значительное отклонение модели от [c.472]исходной неформальной теории. В процессе моделирования приходится считаться с обеими этими сторонами перевода. Особенности математической модели могут подвести исследователя к подгонке под нее некоторых допущений неформальной теории. С другой стороны, если неформальная теория выглядит осмысленно, а математическая модель – нет, то следует испробовать какую-то иную математическую версию данной модели.

Следующий этап – этап математической обработки формальной модели – является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических, дифференциальных, вероятностных, компьютерных – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки мы обычно – вне зависимости от сути задачи – имеем дело с чистыми абстракциями и используем одинаковые математические средства, идет ли речь о гонке вооружений или о подпрыгивании мяча. Этот этап представляет собой дедуктивное ядро моделирования, заключающееся в поиске нетривиальных и непредвиденных выводов из правдоподобных допущений.

Полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на [c.473]естественный язык. Предосторожности, упомянутые нами в связи с переводом на язык формальной модели, сохраняют свое значение и здесь: ведь перевод с неизбежностью влечет за собой потерю и добавление какой-то информации и каких-то допущений. Этот заключительный перевод может оказаться едва ли не самым трудным этапом в процессе моделирования – как часто, глядя на ряд уравнений или графов, задаешься вопросом: “Что же это все может означать?” Хотя разработчик модели в целом заинтересован в получении вполне определенного результата, имеющего вполне определенный реальный смысл, но моделирование нередко порождает и неожиданные результаты, которые могут быть даже более интересными, нежели изначально ожидавшиеся. Литература по моделированию полна примеров того, как исследователь, взяв модель, разработанную кем-то другим, получил из нее интересные, не предвиденные ее автором результаты.

Далее исследователю нужно вернуться назад к первоначальным стадиям моделирования, с тем чтобы внести в модель определенные уточнения. Соответствуют ли полученные выводы тому, что от модели ожидалось изначально? Имеют ли эти выводы смысл в свете эмпирических наблюдений? Если да, то можно ли усовершенствовать модель так, чтобы получить и другие нетривиальные выводы? Можно ли ее сделать более общей? Можно ли получить те же выводы при более простом наборе исходных допущений? Если модель не несет в себе реального смысла, то, что было неверным – формальная модель или же исходная концептуализация? А может быть, какие-то имплицитные допущения помешали правильному переводу с языка неформальной теории на математический язык? В процессе моделирования эти вопросы следует держать в уме постоянно. К формальному [c.474]сравнению и уточнению модели можно возвращаться много раз, прежде чем станет возможной эмпирическая проверка, которая выступает в качестве окончательного этапа моделирования, необходимого для установления степени обоснованности модели.

Эмпирическая проверка бывает нужна не всегда: в некоторых случаях исходные предположения описывают процесс исчерпывающим образом (это относится, например, к правилам избирательной процедуры), и выводы модели в проверке не нуждаются. Но обычно исходные допущения содержат факторы, в теоретической разработке модели полностью не специфицированные и нуждающиеся в оценке с опорой на фактические данные. Поскольку реально все модели социальных процессов предполагают значительный элемент случайности, эмпирические тесты помогают установить также и предсказательную силу модели. Проверка модели включает в себя те же самые этапы операционализации, измерения и статистического анализа, которые обсуждались нами в других главах, хотя для проверки математической модели нередко требуется определенная адаптация стандартных статистических методик. [c.475]



<== предыдущая лекция | следующая лекция ==>
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ | 


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.