русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Условная максимизация


Дата добавления: 2013-12-23; просмотров: 569; Нарушение авторских прав


Сведение многокритериальной задачи к однокритериальной

Итак, пусть для оценивания альтернатив используется несколько критериев qi(x); i = 1...p. Как же тогда осуществлять выбор? Рассмотрим наиболее употребительные способы решения многокритериальных задач. Первый способ состоит в том, чтобы многокритериальную задачу свести к однокритериальной. Это означает введение суперкритерия, т.е. скалярной функции векторного аргумента:

  q0(x)= q0[q1(x), q2(x), ..., qp(x)]. (2)

Суперкритерий позволяет упорядочить альтернативы по величине q0, выделив тем самым наилучшую (в смысле этого критерия). Вид функции q0 определяется тем, как мы представляем себе вклад каждого критерия в суперкритерий. Обычно используют аддитивные или мультипликативные функции:

  q0 = ∑{αi⋅qi/Si}, (3)
  1 - q0 = ∏{1 - [βi⋅qi/Si]} (4)

Коэффициенты Si обеспечивают, во-первых, безразмерность числа Qi/Si (частные критерии могут иметь разную размерность) и, во-вторых, в необходимых случаях (как в формуле 4) выполнения условия Bi⋅Qi/Si < 1. Коэффициенты Ai и Bi отражают относительный вклад частных критериев в суперкритерий.

Итак, при данном способе задача сводится к максимизации суперкритерия:

  x* = argmax{q0[q1(x), ..., qp(x)]} (5)

Очевидные достоинства объединения нескольких критериев в один суперкритерий сопровождаются рядом трудностей и недостатков, которые необходимо учитывать при использовании этого метода. Оставив в стороне трудности построения самой функции и вычислительные трудности ее максимизации, обратим внимание на следующий очень важный момент. Упорядочение точек в многомерном пространстве в принципе не может быть однозначным и полностью определяется видом упорядочивающей функции. Суперкритерий играет роль этой упорядочивающей функции, и его даже «небольшое» изменение может привести к тому, что оптимальная в новом смысле альтернатива окажется очень сильно отличающейся от старой.



Недостатки свертывания нескольких критериев заставляют искать другие подходы к решению задач многокритериального выбора. Рассмотрим второй способ решения таких задач. Он заключается в использовании того факта, что частные критерии обычно неравнозначны между собой. Наиболее явное выражение этой идеи состоит в выделении основного, главного критерия и рассмотрении остальных как дополнительных, сопутствующих. Такое различие критериев позволяет сформулировать задачу выбора как 1 задачу нахождения условного экстремума основного критерия:

  x* = arg{ max q1(x)|qi(x) = Ci, i=2,3,...p} (6)

при условии, что дополнительные критерии остаются на заданных им уровнях.

В некоторых задачах оказывается возможным или даже необходимым задавать ограничения на сопутствующие критерии не столь жестко, как в задаче (6). Например, если сопутствующий критерий характеризует стоимость затрат, то вместо фиксации затрат разумнее задавать их верхний уровень, т.е. формулировать задачу с ограничениями типа неравенств:

  x*=arg{ max q1(x)|qi(x) ≤ Ci, i=2,3...,p} (7)

Отметим, что такое, казалось бы, незначительное изменение постановки задачи требует принципиально иных методов ее решения.



<== предыдущая лекция | следующая лекция ==>
Критериальный язык описания выбора | Нахождение паретовского множества


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.